Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 165(2): 382-95, 2016 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040500

RESUMEN

Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.


Asunto(s)
Desarrollo Embrionario , Genes Duplicados , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Evolución Molecular , Gametogénesis , Células HeLa , Humanos , Ratones
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34083437

RESUMEN

Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Elementos de Nucleótido Esparcido Largo/fisiología , Familia de Multigenes , Animales , Regulación de la Expresión Génica , Genes Ligados a X , Células HEK293 , Proteínas de Homeodominio , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatogénesis/genética , Factores de Transcripción/metabolismo
3.
Development ; 147(3)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31964773

RESUMEN

Pro-spermatogonia (SG) serve as the gateway to spermatogenesis. Using single-cell RNA sequencing (RNAseq), we studied the development of ProSG, their SG descendants and testicular somatic cells during the perinatal period in mice. We identified both gene and protein markers for three temporally distinct ProSG cell subsets, including a migratory cell population with a transcriptome distinct from the previously defined T1- and T2-ProSG stages. This intermediate (I)-ProSG subset translocates from the center of seminiferous tubules to the spermatogonial stem cell (SSC) 'niche' in its periphery soon after birth. We identified three undifferentiated SG subsets at postnatal day 7, each of which expresses distinct genes, including transcription factor and signaling genes. Two of these subsets have the characteristics of newly emergent SSCs. We also molecularly defined the development of Sertoli, Leydig and peritubular myoid cells during the perinatal period, allowing us to identify candidate signaling pathways acting between somatic and germ cells in a stage-specific manner during the perinatal period. Our study provides a rich resource for those investigating testicular germ and somatic cell developmental during the perinatal period.


Asunto(s)
Células Germinativas/crecimiento & desarrollo , Células Intersticiales del Testículo/metabolismo , RNA-Seq/métodos , Células de Sertoli/metabolismo , Análisis de la Célula Individual/métodos , Espermatogonias/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Vía de Señalización Hippo , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Proteínas Serina-Treonina Quinasas/metabolismo , Espermatogénesis/genética , Nicho de Células Madre/fisiología , Factores de Transcripción/metabolismo , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 117(30): 17832-17841, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661178

RESUMEN

Spermatogonial stem cells (SSCs) are essential for the generation of sperm and have potential therapeutic value for treating male infertility, which afflicts >100 million men world-wide. While much has been learned about rodent SSCs, human SSCs remain poorly understood. Here, we molecularly characterize human SSCs and define conditions favoring their culture. To achieve this, we first identified a cell-surface protein, PLPPR3, that allowed purification of human primitive undifferentiated spermatogonia (uSPG) highly enriched for SSCs. Comparative RNA-sequencing analysis of these enriched SSCs with differentiating SPG (KIT+ cells) revealed the full complement of genes that shift expression during this developmental transition, including genes encoding key components in the TGF-ß, GDNF, AKT, and JAK-STAT signaling pathways. We examined the effect of manipulating these signaling pathways on cultured human SPG using both conventional approaches and single-cell RNA-sequencing analysis. This revealed that GDNF and BMP8B broadly support human SPG culture, while activin A selectively supports more advanced human SPG. One condition-AKT pathway inhibition-had the unique ability to selectively support the culture of primitive human uSPG. This raises the possibility that supplementation with an AKT inhibitor could be used to culture human SSCs in vitro for therapeutic applications.


Asunto(s)
Transducción de Señal , Espermatogonias/citología , Espermatogonias/metabolismo , Transcriptoma , Biomarcadores , Separación Celular , Células Cultivadas , Biología Computacional , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunofenotipificación , Masculino , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo
5.
EMBO Rep ; 20(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30573526

RESUMEN

Testis-expressed X-linked genes typically evolve rapidly. Here, we report on a testis-expressed X-linked microRNA (miRNA) cluster that despite rapid alterations in sequence has retained its position in the Fragile-X region of the X chromosome in placental mammals. Surprisingly, the miRNAs encoded by this cluster (Fx-mir) have a predilection for targeting the immediately adjacent gene, Fmr1, an unexpected finding given that miRNAs usually act in trans, not in cis Robust repression of Fmr1 is conferred by combinations of Fx-mir miRNAs induced in Sertoli cells (SCs) during postnatal development when they terminate proliferation. Physiological significance is suggested by the finding that FMRP, the protein product of Fmr1, is downregulated when Fx-mir miRNAs are induced, and that FMRP loss causes SC hyperproliferation and spermatogenic defects. Fx-mir miRNAs not only regulate the expression of FMRP, but also regulate the expression of eIF4E and CYFIP1, which together with FMRP form a translational regulatory complex. Our results support a model in which Fx-mir family members act cooperatively to regulate the translation of batteries of mRNAs in a developmentally regulated manner in SCs.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , MicroARNs/genética , Familia de Multigenes , Interferencia de ARN , ARN Mensajero/genética , Espermatogénesis/genética , Regiones no Traducidas 3' , Animales , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Testículo/metabolismo
6.
Mol Cell ; 43(6): 950-61, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925383

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a conserved RNA decay pathway that degrades aberrant mRNAs and directly regulates many normal mRNAs. This dual role for NMD raises the possibility that its magnitude is buffered to prevent the potentially catastrophic alterations in gene expression that would otherwise occur if NMD were perturbed by environmental or genetic insults. In support of this, here we report the existence of a negative feedback regulatory network that directly acts on seven NMD factors. Feedback regulation is conferred by different branches of the NMD pathway in a cell type-specific and developmentally regulated manner. We identify feedback-regulated NMD factors that are rate limiting for NMD and demonstrate that reversal of feedback regulation in response to NMD perturbation is crucial for maintaining NMD. Together, our results suggest the existence of an intricate feedback network that maintains both RNA surveillance and the homeostasis of normal gene expression in mammalian cells.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/metabolismo , Factor de Transcripción Activador 3/metabolismo , Western Blotting , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células HeLa , Homeostasis , Humanos , ARN Helicasas , Interferencia de ARN , Transactivadores/antagonistas & inhibidores
7.
Mol Cell ; 42(4): 500-10, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21596314

RESUMEN

Nonsense-mediated decay (NMD) degrades both normal and aberrant transcripts harboring stop codons in particular contexts. Mutations that perturb NMD cause neurological disorders in humans, suggesting that NMD has roles in the brain. Here, we identify a brain-specific microRNA-miR-128-that represses NMD and thereby controls batteries of transcripts in neural cells. miR-128 represses NMD by targeting the RNA helicase UPF1 and the exon-junction complex core component MLN51. The ability of miR-128 to regulate NMD is a conserved response occurring in frogs, chickens, and mammals. miR-128 levels are dramatically increased in differentiating neuronal cells and during brain development, leading to repressed NMD and upregulation of mRNAs normally targeted for decay by NMD; overrepresented are those encoding proteins controlling neuron development and function. Together, these results suggest the existence of a conserved RNA circuit linking the microRNA and NMD pathways that induces cell type-specific transcripts during development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Estabilidad del ARN , Transactivadores/metabolismo , Activación Transcripcional , Animales , Encéfalo/metabolismo , Embrión de Pollo , Exones , Células HEK293 , Células HeLa , Humanos , Ratones , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Helicasas , Proteínas de Unión al ARN , Ratas , Transactivadores/genética , Xenopus laevis
8.
Hum Mol Genet ; 25(22): 4898-4910, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28171660

RESUMEN

The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.


Asunto(s)
Proteínas de Homeodominio/genética , Infertilidad Masculina/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genes Homeobox , Genes Ligados a X , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Familia de Multigenes , Regiones Promotoras Genéticas , Espermatogénesis/genética , Espermatozoides/patología , Factores de Transcripción/genética
10.
Semin Cell Dev Biol ; 30: 14-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24560784

RESUMEN

Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.


Asunto(s)
Diferenciación Celular , Espermatogonias/fisiología , Células Madre Adultas/fisiología , Animales , Proliferación Celular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Factores de Transcripción/fisiología , Transcripción Genética
11.
J Biol Chem ; 288(48): 34809-25, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24121513

RESUMEN

Defects in cellular metabolism have been widely implicated in causing male infertility, but there has been little progress in understanding the underlying mechanism. Here we report that several key metabolism genes are regulated in the testis by Rhox5, the founding member of a large X-linked homeobox gene cluster. Among these Rhox5-regulated genes are insulin 2 (Ins2), resistin (Retn), and adiponectin (Adipoq), all of which encode secreted proteins that have profound and wide-ranging effects on cellular metabolism. The ability of Rhox5 to regulate their levels in the testis has the potential to dictate metabolism locally in this organ, given the existence of the blood-testes barrier. We demonstrate that Ins2 is a direct target of Rhox5 in Sertoli cells, and we show that this regulation is physiologically significant, because Rhox5-null mice fail to up-regulate Ins2 expression during the first wave of spermatogenesis and have insulin-signaling defects. We identify other Rhox family members that induce Ins2 transcription, define protein domains and homeodomain amino acid residues crucial for this property, and demonstrate that this regulation is conserved. Rhox5-null mice also exhibit altered expression of other metabolism genes, including those encoding the master transcriptional regulators of metabolism, PPARG and PPARGC1A, as well as SCD1, the rate-limiting enzyme for fatty acid metabolism. These results, coupled with the known roles of RHOX5 and its target metabolism genes in spermatogenesis in vivo, lead us to propose a model in which RHOX5 is a central transcription factor that promotes the survival of male germ cells via its effects on cellular metabolism.


Asunto(s)
Adiponectina/metabolismo , Proteínas de Homeodominio/genética , Insulina/metabolismo , Resistina/metabolismo , Testículo/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Células de Sertoli/metabolismo , Espermatogénesis/genética , Estearoil-CoA Desaturasa/metabolismo , Testículo/metabolismo , Factores de Transcripción/metabolismo
12.
Methods Mol Biol ; 2779: 287-303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526791

RESUMEN

The paired detection of the transcriptome and proteome at single-cell resolution provides exquisite insight to immune mechanisms in health and disease. Here, we describe a detailed protocol wherein we combine cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), a technique utilizing antibody-derived tags (ADTs) to profile mRNA and proteins simultaneously via sequencing, with fluorescence-activated cell sorting to enrich cell populations. Our protocol provides step-by-step guidance on co-staining cells with both fluorescent antibodies and ADTs simultaneously, instructions on cell sorting and an overview of the single-cell capture workflow using the BD Rhapsody™ system. This method is useful for in-depth single-cell characterization on sorted rare cell populations.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Epítopos , Separación Celular , Anticuerpos , Análisis de la Célula Individual/métodos
13.
Reproduction ; 143(5): 611-24, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22393026

RESUMEN

Homeobox genes encode transcription factors that regulate diverse developmental events. The largest known homeobox gene cluster - the X-linked mouse reproductive homeobox (Rhox) cluster - harbors genes whose expression patterns and functions are largely unknown. Here, we report that a member of this cluster, Rhox10, is expressed in male germ cells. Rhox10 is highly transcribed in spermatogonia in vivo and is upregulated in response to the differentiation-inducing agent retinoic acid in vitro. Using a specific RHOX10 antiserum that we generated, we found that RHOX10 protein is selectively expressed in fetal gonocytes, germline stem cells, spermatogonia, and early spermatocytes. RHOX10 protein undergoes a dramatic shift in subcellular localization as germ cells progress from mitotically arrested gonocytes to mitotic spermatogonia and from mitotic spermatogonia to early meiotic spermatocytes, consistent with RHOX10 performing different functions in these stages.


Asunto(s)
Epidídimo/metabolismo , Proteínas de Homeodominio/metabolismo , Espermatocitos/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Epidídimo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Inmunohistoquímica , Masculino , Meiosis , Ratones , Microscopía Fluorescente , Mitosis , Transporte de Proteínas , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis/genética , Transcripción Genética
14.
Cell Rep ; 36(3): 109423, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289349

RESUMEN

Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Transducción de Señal , Espermatogonias/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Células Germinativas/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Transcripción Genética , Activación Transcripcional/genética
15.
Cell Rep ; 26(6): 1501-1517.e4, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726734

RESUMEN

Spermatogenesis has been intensely studied in rodents but remains poorly understood in humans. Here, we used single-cell RNA sequencing to analyze human testes. Clustering analysis of neonatal testes reveals several cell subsets, including cell populations with characteristics of primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). In adult testes, we identify four undifferentiated spermatogonia (SPG) clusters, each of which expresses specific marker genes. We identify protein markers for the most primitive SPG state, allowing us to purify this likely SSC-enriched cell subset. We map the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also define somatic cell subsets in both neonatal and adult testes and trace their developmental trajectories. Our data provide a blueprint of the developing human male germline and supporting somatic cells. The PGC-like and SSC markers are candidates to be used for SSC therapy to treat infertility.


Asunto(s)
Análisis de la Célula Individual/métodos , Testículo/citología , Adulto , Diferenciación Celular , Células Cultivadas , Humanos , Recién Nacido , Masculino , Espermatogonias/citología , Espermatogonias/metabolismo , Testículo/crecimiento & desarrollo
16.
Cell Rep ; 17(1): 149-164, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27681428

RESUMEN

The developmental origins of most adult stem cells are poorly understood. Here, we report the identification of a transcription factor-RHOX10-critical for the initial establishment of spermatogonial stem cells (SSCs). Conditional loss of the entire 33-gene X-linked homeobox gene cluster that includes Rhox10 causes progressive spermatogenic decline, a phenotype indistinguishable from that caused by loss of only Rhox10. We demonstrate that this phenotype results from dramatically reduced SSC generation. By using a battery of approaches, including single-cell-RNA sequencing (scRNA-seq) analysis, we show that Rhox10 drives SSC generation by promoting pro-spermatogonia differentiation. Rhox10 also regulates batteries of migration genes and promotes the migration of pro-spermatogonia into the SSC niche. The identification of an X-linked homeobox gene that drives the initial generation of SSCs has implications for the evolution of X-linked gene clusters and sheds light on regulatory mechanisms influencing adult stem cell generation in general.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Proteínas de Homeodominio/genética , Espermatogénesis/genética , Espermatogonias/metabolismo , Células Madre Germinales Adultas/citología , Animales , Genes del Desarrollo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Noqueados , Familia de Multigenes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Espermatogonias/citología
17.
PLoS One ; 10(3): e0118549, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790000

RESUMEN

RNA interference (RNAi) is widely used to determine the function of genes. We chose this approach to assess the collective function of the highly related reproductive homeobox 3 (Rhox3) gene paralogs. Using a Rhox3 short hairpin (sh) RNA with 100% complementarity to all 8 Rhox3 paralogs, expressed from a CRE-regulated transgene, we successfully knocked down Rhox3 expression in male germ cells in vivo. These Rhox3-shRNA transgenic mice had dramatic defects in spermatogenesis, primarily in spermatocytes and round spermatids. To determine whether this phenotype was caused by reduced Rhox3 expression, we generated mice expressing the Rhox3-shRNA but lacking the intended target of the shRNA-Rhox3. These double-mutant mice had a phenotype indistinguishable from Rhox3-shRNA-expressing mice that was different from mice lacking the Rhox3 paralogs, indicating that the Rhox3 shRNA disrupts spermatogenesis independently of Rhox3. Rhox3-shRNA transgenic mice displayed few alterations in the expression of protein-coding genes, but instead exhibited reduced levels of all endogenous siRNAs we tested. This supported a model in which the Rhox3 shRNA causes spermatogenic defects by sequestering one or more components of the endogenous small RNA biogenesis machinery. Our study serves as a warning for those using shRNA approaches to investigate gene functions in vivo.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espermatogénesis/genética , Animales , Cartilla de ADN/genética , Técnicas de Silenciamiento del Gen/métodos , Células HeLa , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Transgénicos , Análisis por Micromatrices
18.
Spermatogenesis ; 2(4): 238-244, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23248764

RESUMEN

The generation of functional sperm in vitro has been a goal for almost a century. Until recently, researchers have only succeeded in reproducing the early steps of spermatogenesis. This is not surprising given that spermatogenesis is a complicated process that requires the coordinated efforts of germ cells and several somatic cells within the tubular structure of the testis. Finally-last year-Sato et al. reported the successful in vitro production of functional sperm, thereby potentially opening up a new era of reproductive biology. Here, we summarize the history of research directed toward reproducing steps of spermatogenesis in vitro, detail the seminal findings of Sato et al., and suggest ways that their approach can be applied toward clinical applications and addressing fundamental questions about the underlying mechanism of spermatogenesis.

19.
Korean J Anesthesiol ; 62(1): 83-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22323960

RESUMEN

Porphyrias are a group of diseases characterized by an enzyme deficiency in the heme biosynthesis pathway, resulting in accumulation of precursor molecules in the tissue. Some porphyric patients develop progressive liver disease that requires liver transplantation. This case report describes special anesthetic challenges, including careful selection of drugs and the use of special filters that can exclude harmful wavelengths of ultraviolet, in a patient with porphyria who underwent living donor liver transplantation. Understanding the patient's status and disease process, and avoiding triggering factors of porphyria attacks, are important for successful liver transplantation anesthesia in patients with porphyria.

20.
Mol Endocrinol ; 26(4): 538-49, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22322598

RESUMEN

Mammalian male fertility depends on the epididymis, a highly segmented organ that promotes sperm maturation and protects sperm from oxidative damage. Remarkably little is known about how gene expression is controlled in the epididymis. A candidate to regulate genes crucial for epididymal function is reproductive homeobox gene on X chromosome (RHOX)5, a homeobox transcription factor essential for optimal sperm motility that is expressed in the caput region of the epididymis. Here, we report the identification of factors that control Rhox5 gene expression in epididymal cells in a developmentally regulated and region-specific fashion. First, we identify GATA transcription factor-binding sites in the Rhox5 proximal promoter (Pp) necessary for Rhox5 expression in epididymal cells in vitro and in vivo. Adjacent to the GATA sites are androgen-response elements, which bind to the nuclear hormone receptor androgen receptor (AR), and are responsible for the AR-dependent expression of Rhox5 in epididymal cells. We provide evidence that AR is recruited to the Pp in a region-specific and developmentally regulated manner in the epididymis that is dictated not only by differential AR availability but differential methylation of the Pp. Site-specific methylation of the Pp cytosine and guanine separated by one phosphate, most of which overlap with androgen-response elements, inhibited both AR occupancy at the Pp and Pp-dependent transcription in caput epididymal cells. Together, our data support a model in which DNA methylation, AR, and GATA factors collaborate to dictate the unique developmental and region-specific expression pattern of the RHOX5 homeobox transcription factor in the caput epididymis, which in turn controls the expression of genes critical for promoting sperm motility and function.


Asunto(s)
Metilación de ADN , Epidídimo/metabolismo , Factores de Transcripción GATA/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Receptores Androgénicos/metabolismo , Factores de Transcripción/genética , Andrógenos/fisiología , Animales , Línea Celular , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Luciferasas/biosíntesis , Luciferasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos , Receptores Androgénicos/genética , Elementos de Respuesta , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA