Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 78, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194141

RESUMEN

African swine fever virus (ASFV) is a complex DNA virus and the only member of the Asfarviridae family. It causes high mortality and severe economic losses in pigs. The ASFV pB602L protein plays a key role in virus assembly and functions as a molecular chaperone of the major capsid protein p72. In addition, pB602L is an important target for the development of diagnostic tools for African swine fever (ASF) because it is a highly immunogenic antigen against ASFV. In this study, we expressed and purified ASFV pB602L and validated its immunogenicity in serum from naturally infected pigs with ASFV. Furthermore, we successfully generated an IgG2a κ subclass monoclonal antibody (mAb 7E7) against pB602L using hybridoma technology. Using western blot and immunofluorescence assays, mAb 7E7 specifically recognized the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV pB602L protein in vitro. The 474SKENLTPDE482 epitope in the ASFV pB602L C-terminus was identified as the minimal linear epitope for mAb 7E7 binding, with dozens of truncated pB602l fragments characterized by western blot assay. We also showed that this antigenic epitope sequence has a high conservation and antigenic index. Our study contributes to improved vaccine and antiviral development and provides new insights into the serologic diagnosis of ASF. KEY POINTS: • We developed a monoclonal antibody against ASFV pB602L, which can specifically recognize the ASFV Pig/HLJ/2018/ strain. • This study found one novel conserved B-cell epitope 474SKENLTPDE482. • In the 3D structure, 474SKENLTPDE482 is exposed on the surface of ASFV pB602L, forming a curved linear structure.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Epítopos de Linfocito B/genética , Anticuerpos Monoclonales , Western Blotting
2.
J Nanobiotechnology ; 21(1): 424, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964304

RESUMEN

The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Fiebre Porcina Africana/prevención & control , Nanovacunas , Epítopos de Linfocito T , Inmunidad
3.
Mol Microbiol ; 114(6): 891-905, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32767804

RESUMEN

In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.


Asunto(s)
Azoles/farmacología , Farmacorresistencia Fúngica , Hongos/efectos de los fármacos , Hongos/patogenicidad , Esfingolípidos/metabolismo , Animales , Antifúngicos/farmacología , Biopelículas , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Esfingolípidos/genética , Respuesta de Proteína Desplegada , Virulencia
4.
Appl Environ Microbiol ; 87(22): e0112021, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34524893

RESUMEN

An efficient reactive oxygen species (ROS) detoxification system is vital for the survival of the pathogenic fungus Aspergillus fumigatus within the host high-ROS environment of the host. Therefore, identifying and targeting factors essential for oxidative stress response is one approach to developing novel treatments for fungal infections. The oxidation resistance 1 (Oxr1) protein is essential for protection against oxidative stress in mammals, but its functions in pathogenic fungi remain unknown. The present study aimed to characterize the role of an Oxr1 homolog in A. fumigatus. The results indicated that the OxrA protein plays an important role in oxidative stress resistance by regulating the catalase function in A. fumigatus, and overexpression of catalase can rescue the phenotype associated with OxrA deficiency. Importantly, the deficiency of oxrA decreased the virulence of A. fumigatus and altered the host immune response. Using the Aspergillus-induced lung infection model, we demonstrated that the ΔoxrA mutant strain induced less tissue damage along with decreased levels of lactate dehydrogenase (LDH) and albumin release. Additionally, the ΔoxrA mutant caused inflammation at a lower degree, along with a markedly reduced influx of neutrophils to the lungs and a decreased secretion of cytokine usually associated with recruitment of neutrophils in mice. These results characterize the role of OxrA in A. fumigatus as a core regulator of oxidative stress resistance and fungal pathogenesis. IMPORTANCE Knowledge of ROS detoxification in fungal pathogens is useful in the design of new antifungal drugs and could aid in the study of oxidative stress resistance mechanisms. In this study, we demonstrate that OxrA protein localizes to the mitochondria and functions to protect against oxidative damage. We demonstrate that OxrA contributes to oxidative stress resistance by regulating catalase function, and overexpression of catalase (CatA or CatB) can rescue the phenotype that is associated with OxrA deficiency. Remarkably, a loss of OxrA attenuated the fungal virulence in a mouse model of invasive pulmonary aspergillosis and altered the host immune response. Therefore, our finding indicates that inhibition of OxrA might be an effective approach for alleviating A. fumigatus infection. The present study is, to the best of our knowledge, a pioneer in reporting the vital role of Oxr1 protein in pathogenic fungi.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Proteínas Fúngicas/metabolismo , Estrés Oxidativo , Animales , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/patogenicidad , Catalasa , Ratones , Especies Reactivas de Oxígeno , Virulencia
5.
Phytother Res ; 35(11): 5992-6009, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34256418

RESUMEN

This study provides current evidence for efficacy and safety of treating COVID-19 with combined traditional Chinese medicine (TCM) and conventional western medicine (CWM). Six databases were searched from January 1 to December 31, 2020. Randomized controlled trials (RCTs), case-control studies (CCTs), and cohort studies on TCM or TCM combined with CWM treatment for COVID-19 were included. The quality of included RCTs was assessed by Cochrane risk of bias tool, and the Newcastle-Ottawa Scale (NOS) was used to assess the quality of cohort studies and CCTs. Review Manager 5.4 software was used to perform meta-analysis. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. A total of 35 studies (3,808 patients) composing 19 RCTs and 16 observational studies were included. The results of meta-analysis revealed that comparing with CWM alone, integrated TCM and CWM had significant improvement in total effective rate, improvement rate of chest CT, the rate of disease progression, as well as improvement of fever, fatigue and cough. The overall quality of evidence was very low to moderate. In conclusion, TCM combined with CWM was a potential treatment option for increasing clinical effective rate, improving the clinical symptoms, and preventing disease progression in COVID-19 patients. High-quality clinical trials are required in the further.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , SARS-CoV-2 , Resultado del Tratamiento
6.
Cell Microbiol ; 21(12): e13092, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31376233

RESUMEN

Previous studies identified that the budding yeast Saccharomyces cerevisiae have two sphingolipid synthesis-related proteins, Orm1p and Orm2p, that negatively regulate the activities of SPT, which is a key rate-limiting enzyme in sphingolipid synthesis. However, little is known about whether sphingolipids in the cell membrane, which are closely related to ergosterols, could affect the efficacy of azole drugs, which target to the ergosterol biosynthesis. In this study, through genome-wide homologue search analysis, we found that the Aspergillus fumigatus genome only contains one Orm homologue, referred to as OrmA for which the protein expression could be induced by azole antifungals in a dose-dependent manner. Deletion of ormA caused hypersensitivity to azoles, and adding the sphingolipid synthesis inhibitor myriocin rescued the azole susceptibility induced by lack of ormA. In contrast, overexpression of OrmA resulted in azole resistance, indicating that OrmA is a positive azole-response regulator. Further mechanism analysis verified that OrmA is related to drug susceptibility by affecting endoplasmic reticulum stress responses in an unfolded protein response pathway-HacA-dependent manner. Lack of ormA led to an abnormal profile of sphingolipid ceramide components accompanied by hypersensitivity to low temperatures. Furthermore, deletion of OrmA significantly reduced virulence in an immunosuppressed mouse model. The findings in this study collectively suggest that the sphingolipid metabolism pathway in A. fumigatus plays a critical role in azole susceptibility and fungal virulence.


Asunto(s)
Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Azoles/farmacología , Proteínas Fúngicas/metabolismo , Esfingolípidos/metabolismo , Virulencia/efectos de los fármacos , Animales , Antifúngicos/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
7.
Mol Cell Probes ; 49: 101487, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31731011

RESUMEN

Anaplasma capra and A. phagocytophilum, two species of the family Anaplasmataceae, are zoonotic tick-borne obligate intracellular bacteria affecting wild and domestic ruminants, dogs, cats, horses and humans. A. capra and A. phagocytophilum infections have been steadily increasing in both number and geographic distribution, and the accurate diagnosis of these infections is challenging. This study aimed to develop a rapid, sensitive and reliable duplex real-time PCR assay for the specific detection and differentiation of these Anaplasma species. We designed primers and probes against the conserved regions of A. capra groEL and A. phagocytophilum 16S rRNA genes. A range of PCR-related parameters were evaluated such as the dosage of primers and probes, and annealing temperature. The specificity, sensitivity and repeatability of this assay were evaluated. Assay performance was further evaluated using samples collected from 124 goats in four regions of Henan, China. This set of samples was also tested using conventional PCR under conditions previously described. The developed duplex real-time PCR assay allowed the simultaneous detection of A. capra and A. phagocytophilum in a reasonably short time at levels as small as 102 copies/µL, respectively, with optimal specificity and reproducibility. In addition, this duplex real-time PCR assay is the first DNA-based method designed to detect A. capra and A. phagocytophilum, and will be valuable for timely diagnosis and treatment of these infections.


Asunto(s)
Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/aislamiento & purificación , Anaplasma/genética , Anaplasma/aislamiento & purificación , Ehrlichiosis/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Cartilla de ADN/genética , Sondas de ADN/genética , Ehrlichiosis/veterinaria , Plásmidos/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ovinos/microbiología , Temperatura
8.
PLoS Genet ; 12(4): e1005977, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27058039

RESUMEN

Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress.


Asunto(s)
Aciltransferasas/metabolismo , Secuencias de Aminoácidos/genética , Aspergillus nidulans/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Aciltransferasas/genética , Adenosina Trifosfatasas/metabolismo , Antifúngicos/farmacología , Estrés del Retículo Endoplásmico/fisiología , Hifa/genética , Hifa/crecimiento & desarrollo , Transporte Iónico/genética , Itraconazol/farmacología , Lipoilación , Esporas Fúngicas/crecimiento & desarrollo , Tunicamicina/farmacología
9.
Appl Microbiol Biotechnol ; 101(9): 3729-3741, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28050634

RESUMEN

The targeting of stress-response regulators has emerged as a powerful strategy to enhance azole drug efficacy and to abrogate azole drug resistance. Previously, we reported that a damage resistance protein (Dap) family, composed of DapA, DapB, and DapC, could respond to azole stress stimuli in Aspergillus fumigatus, although the exact response mechanisms remain unknown. In this study, RNA-seq analysis found that a total of 180 genes are induced by azole in a dapA-dependent manner. These genes are involved in oxidation-reduction, metabolic processes, and transmembrane transport. Following azole stress stimuli, DapA and DapC consistently show a stable endoplasmic reticulum (ER)-localization pattern. In comparison, the sterol-regulatory element-binding protein SrbA is capable of nuclear translocation from the ER after azole-stress stimuli, suggesting that SrbA, but not Daps, can directly sense azole stress. Moreover, we found that SrbA is required for the normal expression of DapA and DapC but not of DapB. In addition, in the absence of SrbA, the enhanced expression of DapA induced by azole-itraconazole is blocked, indicating that SrbA is required for the DapA response to azole stress. Double mutants together with overexpression experiments suggest that DapA might act downstream of SrbA to respond to azole stress stimuli. Compared with the ΔsrbA strain, no additional increase in sensitivity was observed in the double mutants ΔsrbAΔdapB and ΔsrbAΔdapC, indicating that DapA might be of central importance in the response to azole drugs. Thus, our findings demonstrate that Dap proteins indirectly sense azole stress and link the function of the azole stress-regulator SrbA with the role of Daps in azole susceptibility.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transporte Biológico , Análisis Mutacional de ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Inactivación Metabólica , Redes y Vías Metabólicas
10.
Fungal Genet Biol ; 94: 15-22, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378202

RESUMEN

Ca(2+) uptake into mitochondria plays a central role in cell physiology by stimulating ATP production, shaping cytosolic Ca(2+) transients and regulating cell survival or death. Although this system has been studied extensively in mammalian cells, the physiological implications of Ca(2+) uptake into mitochondria in fungal cells are still unknown. In this study, a bi-directional best-hit BLASTP search revealed that the genome of Aspergillus fumigatus encodes a homolog of a putative mitochondrial Ca(2+) uniporter (MCU) and a mitochondrial carrier protein AGC1/MICU1 homolog. Both putative homologs are mitochondrially localized and required for the response to azole and oxidative stress such that the loss of either McuA or AgcA results in reduced susceptibility to azole and oxidative stress, suggesting a role in environmental stress adaptation. Overexpressing mcuA restores the azole-resistance phenotype of the ΔagcA strain to wild-type levels, but not vice versa, indicating McuA plays a dominant role during these stress responses. Using a mitochondrially targeted version of the calcium-sensitive photoprotein aequorin, we found that only mcuA deletion leads to dysfunctional [Ca(2+)]mt and [Ca(2+)]c homeostasis, suggesting that McuA, but not AgcA, contributes to Ca(2+) uptake into mitochondria. Further point-mutation experiments combined with extracellular Ca(2+) chelator treatment verified that two predicted Ca(2+)-binding sites in McuA are required for Ca(2+) uptake into mitochondria and stress responses through the regulation of [Ca(2+)]c homeostasis.


Asunto(s)
Aspergillus fumigatus/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/metabolismo , Azoles/farmacología , Calcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostasis , Humanos , Mutación , Estrés Oxidativo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA