Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2404983, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113343

RESUMEN

The kinetically retarded sulfur evolution reactions and notorious lithium dendrites as the major obstacles hamper the practical implementation of lithium-sulfur batteries (LSBs). Dual metal atom catalysts as a new model are expected to show higher activity by their rational coupling. Herein, the dual-atom catalyst with coupled Ni─Co atom pairs (Ni/Co-DAC) is designed successfully by programmed approaches. The Ni─Co atom pairs alter the local electron structure and optimize the coordination configuration of Ni/Co-DAC, leading to the coupling effect for promoting the interconversion of sulfur and guiding lithium plating/striping. The LSB delivers a remarkable capacity of 818 mA h g-1 at 3.0 C and a low degeneration rate of 0.053% per cycle over 500 cycles. Moreover, the LSB with a high sulfur mass loading of 6.1 mg cm-2 and lean electrolyte dosage of 6.0 µL mgS -1 shows a remarkable areal capacity of 5.7 mA h cm-2.

2.
Chem Commun (Camb) ; 60(68): 9078-9081, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105356

RESUMEN

VO2 affords ultrafast polysulfide adsorption on account of its oxidation potential, which matches the sulfur working window (1.7-2.8 V). Nevertheless, its nonconductive surface limits direct sulfur conversion. Herein, we gently load carbon quantum dots on VO2 to increase direct Li2S nucleation by enhanced electron conductivity. As a result, the soft-packaged lithium-sulfur pouch cell yields a capacity retention of 88.8% at 0.5C after 100 cycles and a decay rate of 0.17% per cycle over 200 cycles at 2C. The cell energy density of the multilayer cell is up to 386.1 W h kg-1.

3.
Adv Mater ; : e2405790, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015059

RESUMEN

Lithium-sulfur (Li-S) batteries suffer from severe polysulfide shuttle, retarded sulfur conversion kinetics and notorious lithium dendrites, which has curtailed the discharge capacity, cycling lifespan and safety. Engineered catalysts act as a feasible strategy to synchronously manipulate the evolution behaviors of sulfur and lithium species. Herein, a chlorine bridge-enabled binuclear copper complex (Cu-2-T) is in situ synthesized in electrolyte as homogeneous catalyst for rationalizing the Li-S redox reactions. The well-designed Cu-2-T provides completely active sites and sufficient contact for homogeneously guiding the Li2S nucleation/decomposition reactions, and stabilizing the lithium working interface according to the synchrotron radiation X-ray 3D nano-computed tomography, small angle neutron scattering and COMSOL results. Moreover, Cu-2-T with the content of 0.25 wt% approaching saturated concentration in electrolyte further boosts the homogeneous optimization function in really operated Li-S batteries. Accordingly, the capacity retention of the Li-S battery is elevated from 51.4% to 86.3% at 0.2 C, and reaches 77.0% at 1.0 C over 400 cycles. Furthermore, the sulfur cathode with the assistance of Cu-2-T realizes the stable cycling under the practical scenarios of soft-packaged pouch cell and high sulfur loading (6.5 mg cm-2 with the electrolyte usage of 4.5 µL mgS -1).

4.
Nat Commun ; 15(1): 3231, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622167

RESUMEN

Engineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium-sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 Å is developed for lithium-sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds. Benefiting from the proximal copper atoms and their unique coordination, the copper dual-atom catalyst with the increased active interface concentration synchronously guide the evolutions of sulfur and lithium species. Such a delicate design breaks through the activity limitation of mononuclear metal center and represents a catalyst concept for lithium-sulfur battery realm. Therefore, a remarkable areal capacity of 7.8 mA h cm-2 is achieved under the scenario of sulfur content of 60 wt.%, mass loading of 7.7 mg cm-2 and electrolyte dosage of 4.8 µL mg-1.

5.
Sci Bull (Beijing) ; 69(13): 2013-2016, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38658234
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA