Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 12(1): 136, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28235371

RESUMEN

High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe2+-O2- orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36~455.16/-72.63~-32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23 × 10-31 kg; Fe2O3-CoFe2O4 3.93 × 10-31 kg; Fe2O3-NiFe2O4 11.59 × 10-31 kg; Fe2O3-CrFe2O4 -4.2 × 10-31 kg; Fe2O3-MnFe2O4 -11.73 × 10-31 kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

2.
J Hazard Mater ; 336: 174-187, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28494305

RESUMEN

High-photostability fluorescent (XZn)Fe2O4 (X=Mg, Mn or Ni) embedded in BiFeO3 spinel-perovskite nanocomposites were successfully fabricated via a novel bio-induced phase transfer method using shewanella oneidensis MR-1. These nanocomposites have the near-infrared fluorescence response (XZn or Fe)-O-O-(Bi) interfaces (785/832nm), and the (XZn)Fe2O4/BiFeO3 lattices with high/low potentials (572.15-808.77meV/206.43-548.1meV). Our results suggest that heavy metal ion (Cr3+, Cd2+, Co2+ and Pb2+) d↓ orbitals hybridize with the paired-spin X-Zn-Fe d↓-d↓-d↑↓ orbitals to decrease the average polarization angles (-29.78 to 44.71°), qualitatively enhancing the photovoltage response selective potentials (39.57-487.84meV). The fluorescent kinetic analysis shows that both first-order and second-order equilibrium adsorption isotherms are in line and meet the Langmuir and Freundlich modes. Highly selective fluorescence detection of Co2+, Cr3+ and Cd2+ can be achieved using Fe3O4-BiFeO3 (Langmuir mode), (MgZn)Fe2O4-BiFeO3 and (MnZn)Fe2O4-BiFeO3 (Freundlich mode), respectively. Where the corresponding max adsorption capacities (qmax) are 1.5-1.94, 35.65 and 43.7 multiple, respectively, being more competitive than that of other heavy metal ions. The present bio-synthesized method might be relevant for high-photostability fluorescent spinel-perovskite nanocomposites, for design of heavy metal ion sensors.

3.
Nanoscale Res Lett ; 11(1): 543, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27928781

RESUMEN

Ferrites-bismuth ferrite is an intriguing option for medical diagnostic imaging device due to its magnetoelectric and enhanced near-infrared fluorescent properties. However, the embedded XFO nanoparticles are randomly located on the BFO membranes, making implementation in devices difficult. To overcome this, we present a facile bio-approach to produce XFe2O4-BiFeO3 (XFO-BFO) (X = Cr, Mn, Co, or Ni) membranes using Shewanella oneidensis MR-1. The perovskite BFO enhances the fluorescence intensity (at 660 and 832 nm) and surface potential difference (-469 ~ 385 meV and -80 ~ 525 meV) of the embedded spinel XFO. This mechanism is attributed to the interfacial coupling of the X-Fe (e- or h+) and O-O (h+) interfaces. Such a system could open up new ideas in the design of environmentally friendly fluorescent membranes.

4.
Nanoscale Res Lett ; 10(1): 967, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26061445

RESUMEN

We elucidated a number of facets regarding glutathione (GSH)-bismuth ferrite (BiFeO3, BFO) interactions and reactivity that have previously remained unexplored on a molecular level. In this approach, the cation-modified reduced GSH (or oxidised glutathione (GS·)) formed on the (111)-oriented BiFeO3 membrane (namely BFO-(111)) can serve as an efficient quencher, and the luminescence mechanism is explained in aqueous conditions. Notably, we suggest the use of Fe(2+)↓ ion as an electron donor and K(+) ion as an electron acceptor to exert a "gluing" effect on the glutamic acid (Glu) and glycine (Gly) side chains, producing an exposed sulfhydryl (-SH) configuration. This method may enable the rational design of a convenient platform for biosensors.

5.
J Hazard Mater ; 294: 47-56, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25841086

RESUMEN

Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr1-cPucSiO4 over a wide range of Pu doping concentrations (c=0-10mol%). The calculations indicated that the low-angular-momentum Pu-fxy-shell electron excites an inner-shell O-2s(2) orbital to create an oxygen defect (VO-s) below c=2.8mol%. This oxygen defect then captures a low-angular-momentum Zr-5p(6)5s(2) electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c>2.8mol%, each accumulated VO-p defect captures a high-angular-momentum Zr-4dz electron and two Si-pz electrons to create delocalized Si(4+)→Si(2+) charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5mol% because of the formation of a mixture of ZrO8 polyhedral and SiO4 tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.


Asunto(s)
Plutonio/química , Silicatos/química , Circonio/química , Simulación por Computador , Electrones , Modelos Químicos
6.
J Mol Model ; 21(4): 91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25786830

RESUMEN

Understanding how temperature affects the electronic transitions of BFO is important for design of BiFeO3 (BFO)-based temperature-sensitive device. Hitherto, however, there have been only very limited reports of the quantitative simulation. Here, we used density functional theory (DFT) and two-dimensional correlation analysis (2D-CA) techniques to calculate the systematic variations in electronic transitions of BFO crystal, over a range of temperature (50~1500 K). The results suggest that the heat accumulation accelerates the O-2p(4) orbital splitting, inducing the Fe(3+)-3d(5) → Fe(2+)-3d(5)d(0) charge disproportionation. The origin is observed as the temperature-dependent electron transfer process changes from threefold degeneracy to twofold degeneracy. Additionally, the crystallographic orientation (111) can be used to control the 2p-hole-induced electronic transition as O → unoccupied Fe(3+)-3d(5), in comparison to the O → Bi-6p(3) + Fe(3+)-3d(5)d(0) on the orientations (001) and (101). This study offers new perspective on the improvement of BFO-based temperature-sensitive device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA