Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(25): 37326-37336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771538

RESUMEN

In order to evaluate the influence of global warming on the ecosystem processes in marine environments, the changes in colonization dynamics of periphytic microbiota were studied using the periphytic ciliate communities as the test organism fauna under a continuous warming gradient of 22℃ (control), 25℃, 28℃, 31℃, and 34 ℃. The results demonstrated that (1) the test ciliate communities generally showed a similar temporal pattern in within the colonization process under the water temperatures from 22 up to 28℃; however, (2) the colonization dynamics were significantly changed, and the fitness of colonization curves to the MacArthur-Wilson model equation was failed under the temperature increased by 6 ℃, and (3) the loading or assimilative capacity of the test aquatic ecosystem was decreased with the increase of water temperature. Therefore, this study suggests that continuous warming may significantly drive the colonization dynamics of periphytic ciliates in marine ecosystems.


Asunto(s)
Cilióforos , Ecosistema , Calentamiento Global , Cilióforos/fisiología , Temperatura
2.
Mar Pollut Bull ; 198: 115882, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096695

RESUMEN

To investigate effects of salinity variability on colonization dynamics of periphytic protozoan fauna, a 21-day study was conducted in temperature-controlled circulation systems (TCCSs). Periphytic protozoan communities were incubated using glass slides as artificial substrata in five TCCS aquaria with a large-scale salinity gradient of 9, 19, 29 (control), 39, and 49 PSU, respectively. The colonization dynamics were observed on days 3, 5, 7, 10, 14, and 21. The colonization dynamics were well fitted to the MacArthur-Wilson and logistic model equations in colonization and growth curves in all five treatments, respectively. However, the maximum species richness and abundance were reduced, and the colonization patterns were significantly shifted in four treatments with salinity changed by 20 PSU compared to the control (29 PSU). Thus, it is suggested that the large-scale salinity variability may reduce the species richness significantly and affect colonization dynamics of periphytic protozoan fauna in marine environments.


Asunto(s)
Biodiversidad , Cilióforos , Monitoreo del Ambiente , Salinidad , Modelos Logísticos , Ecosistema
3.
Environ Sci Pollut Res Int ; 31(9): 13327-13334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244160

RESUMEN

The pollution of microplastics (MPs) to the marine environment has become a widespread focus of attention. To assess MP-induced ecotoxicity on marine ecosystems, periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1. Protozoan samples were collected using microscope slides from coastal waters of the Yellow Sea, northern China. A total of 13 protozoan species were identified and represented different tolerance to MP-induced ecotoxicity. Inhibition effects of MPs on the test protozoan communities were clearly shown in terms of both the species richness and individual abundance and followed linear relationships to MP concentrations. The community patterns were driven by MPs and significantly shifted at concentrations over 5 mg l-1. Our findings demonstrated that MPs may induce the community-level ecotoxic response of periphytic protozoan fauna and followed significant community dynamics. Thus, it is suggested that periphytic protozoan fauna may be used as useful community-based test model organisms for evaluating MP-induced ecotoxicity in marine environments.


Asunto(s)
Cilióforos , Contaminantes Químicos del Agua , Ecosistema , Biodiversidad , Monitoreo del Ambiente , Microplásticos , Plásticos , Cilióforos/fisiología , Contaminantes Químicos del Agua/toxicidad
4.
Mar Pollut Bull ; 177: 113498, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35247805

RESUMEN

As an important biological indicator, multivariate dispersion in homogeneity of an observed community is a useful parameter for bioassessment of environmental heterogeneity. To identify the influence of tidal events on homogeneity of protozoan periphyton fauna from the highest tideline to the lowest, a 1-month baseline survey was carried out along five tidelines (sites A-E) in an intertidal zone of the Yellow Sea, northern China. There was a significant influence of tidal events on the homogeneity in both compositional and community structure among five tidelines. The ß-diversity measures generally decreased from the highest tideline to the lowest. The biodiversity indices of the protozoans dropped sharply from the highest to the middle tidelines, followed by an increase until to the lowest tideline. These findings suggest that the homogeneity of protozoan periphyton in both species composition and relative abundance was significantly shaped by the environmental heterogeneity in intertidal zones of marine ecosystems.


Asunto(s)
Cilióforos , Perifiton , Biodiversidad , Ecosistema , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA