Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1310-1324.e10, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827684

RESUMEN

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Asunto(s)
Cromosomas Humanos Par 17 , Mutación , Anomalías Múltiples/genética , Puntos de Rotura del Cromosoma , Trastornos de los Cromosomas/genética , Duplicación Cromosómica/genética , Variaciones en el Número de Copia de ADN , Reparación del ADN/genética , Replicación del ADN , Reordenamiento Génico , Genoma Humano , Variación Estructural del Genoma , Humanos , Mutación INDEL , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Síndrome de Smith-Magenis/genética
2.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724785

RESUMEN

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TOR
3.
Proc Natl Acad Sci U S A ; 119(39): e2209717119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122223

RESUMEN

Fruit neck is the proximal portion of the fruit with undesirable taste that has detrimental effects on fruit shape and commercial value in cucumber. Despite the dramatic variations in fruit neck length of cucumber germplasms, the genes and regulatory mechanisms underlying fruit neck elongation remain mysterious. In this study, we found that Cucumis sativus HECATE1 (CsHEC1) was highly expressed in fruit neck. Knockout of CsHEC1 resulted in shortened fruit neck and decreased auxin accumulation, whereas overexpression of CsHEC1 displayed the opposite effects, suggesting that CsHEC1 positively regulated fruit neck length by modulating local auxin level. Further analysis showed that CsHEC1 directly bound to the promoter of the auxin biosynthesis gene YUCCA4 (CsYUC4) and activated its expression. Enhanced expression of CsYUC4 resulted in elongated fruit neck and elevated auxin content. Moreover, knockout of CsOVATE resulted in longer fruit neck and higher auxin. Genetic and biochemical data showed that CsOVATE physically interacted with CsHEC1 to antagonize its function by attenuating the CsHEC1-mediated CsYUC4 transcriptional activation. In cucumber germplasms, the expression of CsHEC1 and CsYUC4 positively correlated with fruit neck length, while that of CsOVATE showed a negative correlation. Together, our results revealed a CsHEC1-CsOVATE regulatory module that confers fruit neck length variation via CsYUC4-mediated auxin biosynthesis in cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos
4.
J Perianesth Nurs ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678461

RESUMEN

PURPOSE: To construct the comfort status scale for patients with lung cancer after thoracoscopic surgery. DESIGN: Delphi method inquiry to 15 clinical and nursing experts. METHODS: On the basis of the comfort status scale and the subjective experience and objective symptoms of patients with lung cancer after thoracoscopic surgery, the relevant literature was consulted, semistructured interviews and group discussions were conducted, the pool of items of the postoperative comfort status scale for patients with lung cancer was initially formed, and the postoperative comfort status scale for patients with lung cancer was finally established. FINDINGS: The positive coefficient of experts was 100%, the coefficient of authority was 0.92 and 0.93, and the Kendal's W was 0.257 and 0.298, the degree of coordination of expert opinions was statistically significant (P < .05). Finally, a total of 28 items in four dimensions were formed to assess the postoperative comfort status of patients with lung cancer after thoracoscopic surgery. CONCLUSIONS: The Delphi method-based comfort status scale for patients with lung cancer after thoracoscopic surgery is scientific and reliable, and can provide a quantitative basis for the evaluation of the comfort status of patients after lung cancer thoracoscopic surgery, to further provide individual comfort care measures.

5.
Development ; 147(7)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32165491

RESUMEN

The WUSCHEL-CLAVATA3 pathway genes play an essential role in shoot apical meristem maintenance and floral organ development, and under intense selection during crop domestication. The carpel number is an important fruit trait that affects fruit shape, size and internal quality in cucumber, but the molecular mechanism remains elusive. Here, we found that CsCLV3 expression was negatively correlated with carpel number in cucumber cultivars. CsCLV3-RNAi led to increased number of petals and carpels, whereas overexpression of CsWUS resulted in more sepals, petals and carpels, suggesting that CsCLV3 and CsWUS function as a negative and a positive regulator for carpel number variation, respectively. Biochemical analyses indicated that CsWUS directly bound to the promoter of CsCLV3 and activated its expression. Overexpression of CsFUL1A , a FRUITFULL-like MADS-box gene, resulted in more petals and carpels. CsFUL1A can directly bind to the CsWUS promoter to stimulate its expression. Furthermore, we found that auxin participated in carpel number variation in cucumber through interaction of CsARF14 with CsWUS. Therefore, we have identified a gene regulatory pathway involving CsCLV3, CsWUS, CsFUL1A and CsARF14 in determining carpel number variation in an important vegetable crop - cucumber.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/genética , Flores/citología , Frutas , Redes Reguladoras de Genes/fisiología , Recuento de Células , Flores/embriología , Flores/genética , Frutas/citología , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Meristema/embriología , Meristema/genética , Fenotipo , Plantas Modificadas Genéticamente
6.
Plant Physiol ; 189(3): 1553-1569, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35389464

RESUMEN

Fruits and seeds play essential roles in plant sexual reproduction and the human diet. Successful fertilization involves delivery of sperm in the pollen tube to the egg cell within the ovary along the transmitting tract (TT). Fruit cavity is an undesirable trait directly affecting cucumber (Cucumis sativus) commercial value. However, the regulatory genes underlying fruit cavity formation and female fertility determination remain unknown in crops. Here, we characterized a basic Helix-Loop-Helix (bHLH) gene C. sativus SPATULA (CsSPT) and its redundant and divergent function with ALCATRAZ (CsALC) in cucumber. CsSPT transcripts were enriched in reproductive organs. Mutation of CsSPT resulted in 60% reduction in female fertility, with seed produced only in the upper portion of fruits. Csspt Csalc mutants displayed complete loss of female fertility and fruit cavity due to carpel separation. Further examination showed that stigmas in the double mutant turned outward with defective papillae identity, and extracellular matrix contents in the abnormal TT were dramatically reduced, which resulted in no path for pollen tube extension and no ovules fertilized. Biochemical and transcriptome analysis showed that CsSPT and CsALC act in homodimers and heterodimers to confer fruit cavity and female sterility by mediating genes involved in TT development, auxin-mediated signaling, and cell wall organization in cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Frutas/genética , Enfermedades de las Plantas , Proteínas de Plantas/genética , Tubo Polínico/genética , Semillas/genética
7.
Platelets ; 34(1): 2229905, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37409458

RESUMEN

Platelet transfusion refractoriness (PTR) is an intractable issue in hematological patients, which increases bleeding risks and hospitalization costs to a great extent. We reviewed 108 patients with hematological diseases including acute leukemia, myelodysplastic syndrome, aplastic anemia, and others who received allogeneic hematopoietic stem cell transplantation (HSCT) from January 2019 through December 2020. After multivariable logistic regression, we found that splenomegaly (odds ratio [OR] = 26.98, p < .001) and JAK mutation (OR = 17.32, p = .024) were independent risk factors for PTR. During the period of transplantation, patients in the PTR group had a significantly higher platelet transfusion demand, which was reflected in the increased number of platelet transfusions (10.23 ± 6.696 vs. 5.06 ± 1.904, p < .001). After multivariate adjustment, PTR turned out to be independently associated with worse overall survival (hazard ratio = 2.794, 95% confidence interval = 1.083-7.207, p = .034). In conclusion, we found that splenomegaly and JAK gene mutation were independent risk factors for PTR in patients with hematological diseases. A history of PTR prior to allo-HSCT indicates a poor prognosis.


What is the context?Platelet transfusion refractoriness is a critical issue, and it greatly increases bleeding risks and hospitalization costs.Patients with hematological diseases tend to develop PTR.PTR results from immune and nonimmune factors and the latter account for 80­90%.At present, there are few studies focused on the inducing factors of PTR, and the specific mechanism is not clear.What is new?In this study, we investigated 108 patients with hematological disorders who received allogeneic HSCT from January 2019 to December 2020.We found that splenomegaly and JAK gene mutation were independent risk factors for PTR in patients with hematological diseases.PTR had a passive effect on the prognosis of patients after HSCT, as indicated by worse OS and a trend toward lower platelets after transplantation.PTR might affect megakaryocyte reconstitution after transplantation.What is the impact?This study provides evidence that hematological patients with splenomegaly should be alert to the occurrence of PTR, which often indicates a worse prognosis of transplantation.Spleen reduction and JAK inhibitors in the treatment of PTR are worth exploring.AbbreviationsPLT: platelets; PTR: platelet transfusion refractoriness; HSCT: hematopoietic stem cell transplantation; OR: odds ratio; HR: hazard ratio; CI: confidence interval; IQR: interquartile range; SD: standard deviation; HLA: human leukocyte antigen; HPA: human platelet antigen; OS: overall survival; RFS: relapse free survival; PI: post-transfusion increment; PPR: percentage platelet recovery; CCI: corrected count increment; ICU: intensive care unit; AA: aplastic anemia; MDS: myelodysplastic syndrome; AML: acute myeloid leukemia; ALL: acute lymphocytic leukemia; CML: chronic myeloid leukemia; CMML: chronic myelomonocytic leukemia; MPN: myeloproliferative neoplasm; SI: splenic irradiation; Abs: antibodies; CR: complete remission; DAC: decitabine; GVHD: graft-versus-host disease; BM: bone marrow; PB: peripheral blood.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Síndromes Mielodisplásicos , Humanos , Estudios Retrospectivos , Transfusión de Plaquetas/efectos adversos , Esplenomegalia/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Pronóstico , Síndromes Mielodisplásicos/terapia , Factores de Riesgo
8.
Microb Cell Fact ; 21(1): 81, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538542

RESUMEN

BACKGROUND: Aromatic compounds, such as p-coumaric acid (p-CA) and caffeic acid, are secondary metabolites of various plants, and are widely used in diet and industry for their biological activities. In addition to expensive and unsustainable methods of plant extraction and chemical synthesis, the strategy for heterologous synthesis of aromatic compounds in microorganisms has received much attention. As the most abundant renewable resource in the world, lignocellulose is an economical and environmentally friendly alternative to edible, high-cost carbon sources such as glucose. RESULTS: In the present study, carboxymethyl-cellulose (CMC) was utilized as the sole carbon source, and a metabolically engineered Saccharomyces cerevisiae strain SK10-3 was co-cultured with other recombinant S. cerevisiae strains to achieve the bioconversion of value-added products from CMC. By optimizing the inoculation ratio, interval time, and carbon source content, the final titer of p-CA in 30 g/L CMC medium was increased to 71.71 mg/L, which was 155.9-fold higher than that achieved in mono-culture. The de novo biosynthesis of caffeic acid in the CMC medium was also achieved through a three-strain co-cultivation. Caffeic acid production was up to 16.91 mg/L after optimizing the inoculation ratio of these strains. CONCLUSION: De novo biosynthesis of p-CA and caffeic acid from lignocellulose through a co-cultivation strategy was achieved for the first time. This study provides favorable support for the biosynthesis of more high value-added products from economical substrates. In addition, the multi-strain co-culture strategy can effectively improve the final titer of the target products, which has high application potential in the field of industrial production.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Ácidos Cafeicos , Carbono/metabolismo , Carboximetilcelulosa de Sodio/metabolismo , Técnicas de Cocultivo , Ácidos Cumáricos , Medios de Cultivo/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo
9.
J Appl Microbiol ; 133(2): 707-719, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35462447

RESUMEN

AIMS: To overcome the defective unstable production of p-coumaric acid (p-CA) using episomal plasmids and simultaneously achieve genetic stability and high-copy integration in Saccharomyces cerevisiae. METHODS AND RESULTS: Two-micron plasmids were used to obtain high titres of p-CA, but p-CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p-CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p-CA synthesis cassette, and the high-level p-CA-producing strain QT3-20 was identified. In shake flask fermentation, the final p-CA titre of QT3-20 reached 228.37 mg L-1 at 168 h, 11-fold higher than integrated strain QU3-20 using URA3 as the selective marker, and 9-fold higher than the best-performing episomal expression strain NKE1. Additionally, the p-CA titre and gene copy number remained stable after 100 generations of QT3-20 in a nonselective medium. CONCLUSION: We achieved high-copy genome integration and stable heterologous production of p-CA via a POT1-mediated strategy in S. cerevisiae. SIGNIFICANCE AND IMPACT OF STUDY: With superior genetic stability and production stability in a nonselective medium during fermentation, the high-level p-CA-producing strain constructed via POT1-mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p-CA derivatives, make downstream processing and biosynthesis much simpler.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ácidos Cumáricos/metabolismo , Fermentación , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
10.
Environ Res ; 204(Pt D): 112398, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34800536

RESUMEN

Bisphenol analogues (BPs) are heavily used and negatively affect the health of human beings, however, there is little knowledge regarding human exposure to BPs other than BPA. This study aims to assess human exposure to BPs through investigating pooled urine and wastewater samples. Twenty-four pooled urine samples were prepared from 960 specimens (classified by age and gender). Wastewater samples were collected from six major wastewater treatment plants (WWTPs) in Guangzhou, South of China. BPA, BPS, and BPAF were widely detected in urine samples, with a median concentration of 0.96, 0.42, and 0.15 µg/L, respectively. Median urinary levels of BPA and BPS were higher in males than females (p > 0.05). In addition, BPA and BPS urinary levels in young adults (15-30 years old) were greater than those in children (0-15 years old) (p > 0.05). Nevertheless, most of the BPs were detected in wastewater samples, of which BPA and BPS were predominant BPs, with a median concentration of 1.0 and 0.29 µg/L. The average per capital mass loads of ΣBPs on the weekdays of mix typed WWTP was much higher than those of the weekends. Nonetheless, the average loads of ΣBPs on the weekdays of domestic WWTP was slightly lower than those of the weekends. This indicated that important sources of BPs might include industrial wastewater and household cleaning products. Urinary BPA, BPS, and BPAF accounted for less than 5% per capital mass loads in wastewater, suggesting that much of the BPA, BPS, and BPAF in municipal wastewater originate non-human excretion. Hence, the wastewater-based epidemiology (WBE) approach based on parent compounds is not available for assessing human exposure to BPs, neither for other industrial chemicals with diverse sources in municipal wastewater. These results contributes to the development of an efficient surveillance system which can provide insight in the trends of human exposure of BPs.


Asunto(s)
Compuestos de Bencidrilo , Aguas Residuales , Compuestos de Bencidrilo/orina , China , Femenino , Humanos , Masculino , Aguas Residuales/química
11.
Am J Hum Genet ; 103(2): 171-187, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30032986

RESUMEN

Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, which was further used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be overlooked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and efficient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.


Asunto(s)
Mutación con Ganancia de Función/genética , Mutación/genética , Alelos , Codón sin Sentido/genética , Bases de Datos Genéticas , Exoma/genética , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/genética , Fenotipo
12.
Am J Hum Genet ; 103(5): 794-807, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401460

RESUMEN

Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.

13.
Genome Res ; 28(8): 1228-1242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29907612

RESUMEN

Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.


Asunto(s)
Elementos Alu/genética , Variaciones en el Número de Copia de ADN/genética , Inestabilidad Genómica/genética , Duplicación de Gen/genética , Genoma Humano/genética , Humanos , Eliminación de Secuencia
14.
J Cancer Educ ; 36(2): 310-324, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31641979

RESUMEN

Cancer is one of the leading causes of death among Indigenous populations. Communication campaigns are an important component of cancer prevention and treatment. However, communication about cancer with Indigenous populations has yet to be fully explored and understood. In this systematic literature review, we examine peer-reviewed research to gain insight into the factors that contribute to effective communication about cancer with Indigenous populations. The review yielded a total of 7313 potential articles and a total of 25 of these manuscripts met the inclusion criteria. Results indicate five primary factors that may increase the effectiveness of communication about cancer with Indigenous populations. Factors include the need to (1) respect traditional knowledge, (2) use appropriate language, (3) involve community members in the communication process, (4) include people from different generations in message design, and (5) engender trust in health communicators. Results also provide insight into communication methods that contribute to effective cancer communication. We identify gaps in the literature and provide recommendations for future cancer communication strategies and research with Indigenous populations.


Asunto(s)
Neoplasias , Grupos de Población , Canadá , Comunicación , Atención a la Salud , Humanos , Estados Unidos
15.
Hum Mutat ; 41(1): 182-195, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471994

RESUMEN

Congenital scoliosis (CS) is a birth defect with variable clinical and anatomical manifestations due to spinal malformation. The genetic etiology underlying about 10% of CS cases in the Chinese population is compound inheritance by which the gene dosage is reduced below that of haploinsufficiency. In this genetic model, the trait manifests as a result of the combined effect of a rare variant and common pathogenic variant allele at a locus. From exome sequencing (ES) data of 523 patients in Asia and two patients in Texas, we identified six TBX6 gene-disruptive variants from 11 unrelated CS patients via ES and in vitro functional testing. The in trans mild hypomorphic allele was identified in 10 of the 11 subjects; as anticipated these 10 shared a similar spinal deformity of hemivertebrae. The remaining case has a homozygous variant in TBX6 (c.418C>T) and presents a more severe spinal deformity phenotype. We found decreased transcriptional activity and abnormal cellular localization as the molecular mechanisms for TBX6 missense loss-of-function alleles. Expanding the mutational spectrum of TBX6 pathogenic alleles enabled an increased molecular diagnostic detection rate, provided further evidence for the gene dosage-dependent genetic model underlying CS, and refined clinical classification.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Patrón de Herencia , Mutación Missense , Proteínas de Dominio T Box/genética , Alelos , Línea Celular , Femenino , Expresión Génica , Genes Reporteros , Genotipo , Haplotipos , Humanos , Masculino , Modelos Moleculares , Técnicas de Diagnóstico Molecular , Fenotipo , Conformación Proteica , Radiografía , Análisis de Secuencia de ADN , Columna Vertebral/anomalías , Columna Vertebral/diagnóstico por imagen , Relación Estructura-Actividad , Proteínas de Dominio T Box/química , Secuenciación del Exoma
16.
Hum Mutat ; 41(1): 150-168, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31448840

RESUMEN

Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing. Molecular characterization of Xq22-PLP1-DEL from 17 cases (eight herein and nine published) revealed an overrepresentation of breakpoints that reside within repeats (11/17, ~65%) and the clustering of ~47% of proximal breakpoints in a genomic instability hotspot with characteristic non-B DNA density. These findings implicate a potential role for genomic architecture in stimulating the formation of Xq22-PLP1-DEL. The correlation of Xq22-PLP1-DEL gene content with neurological disease trait in female cases enabled refinement of the associated SROs to a single genomic interval containing six genes. Our data support the hypothesis that genes contiguous to PLP1 contribute to EONDT.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos X , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Carácter Cuantitativo Heredable , Niño , Preescolar , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Hibridación Genómica Comparativa , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje , Fenotipo , Secuencias Repetitivas de Ácidos Nucleicos , Factores Sexuales , Síndrome , Inactivación del Cromosoma X
17.
Metab Eng ; 59: 87-97, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32007615

RESUMEN

The nonconventional yeast Issatchenkia orientalis can grow under highly acidic conditions and has been explored for production of various organic acids. However, its broader application is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. We recently constructed an episomal plasmid based on the autonomously replicating sequence (ARS) from Saccharomyces cerevisiae (ScARS) in I. orientalis and developed a CRISPR/Cas9 system for multiplexed gene deletions. Here we report three additional genetic tools including: (1) identification of a 0.8 kb centromere-like (CEN-L) sequence from the I. orientalis genome by using bioinformatics and functional screening; (2) discovery and characterization of a set of constitutive promoters and terminators under different culture conditions by using RNA-Seq analysis and a fluorescent reporter; and (3) development of a rapid and efficient in vivo DNA assembly method in I. orientalis, which exhibited ~100% fidelity when assembling a 7 kb-plasmid from seven DNA fragments ranging from 0.7 kb to 1.7 kb. As proof of concept, we used these genetic tools to rapidly construct a functional xylose utilization pathway in I. orientalis.


Asunto(s)
Sistemas CRISPR-Cas , ADN de Hongos , Ingeniería Metabólica , Pichia , ADN de Hongos/genética , ADN de Hongos/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomyces cerevisiae/genética
18.
Am J Med Genet A ; 182(1): 38-52, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782611

RESUMEN

White-Sutton syndrome (WHSUS) is a recently-identified genetic disorder resulting from de novo heterozygous pathogenic variants in POGZ. Thus far, over 50 individuals have been reported worldwide, however phenotypic characterization and data regarding the natural history are still incomplete. Here we report the clinical features of 22 individuals with 21 unique loss of function POGZ variants. We observed a broad spectrum of intellectual disability and/or developmental delay with or without autism, and speech delay in all individuals. Other common problems included ocular abnormalities, hearing loss and gait abnormalities. A validated sleep disordered breathing questionnaire identified symptoms of obstructive sleep apnea in 4/12 (33%) individuals. A higher-than-expected proportion of cases also had gastrointestinal phenotypes, both functional and anatomical, as well as genitourinary anomalies. In line with previous publications, we observed an increased body mass index (BMI) z-score compared to the general population (mean 0.59, median 0.9; p 0.0253). Common facial features included microcephaly, broad forehead, midface hypoplasia, triangular mouth, broad nasal root and flat nasal bridge. Analysis of the Baylor Genetics clinical laboratory database revealed that POGZ variants were implicated in approximately 0.14% of cases who underwent clinical exome sequencing for neurological indications with or without involvement of other body systems. This study describes a greater allelic series and expands the phenotypic spectrum of this new syndromic form of intellectual disability and autism.


Asunto(s)
Trastorno Autístico/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Transposasas/genética , Adolescente , Adulto , Trastorno Autístico/patología , Niño , Preescolar , Exoma/genética , Femenino , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Microcefalia/genética , Microcefalia/patología , Persona de Mediana Edad , Mutación/genética , Fenotipo , Secuenciación del Exoma , Adulto Joven
19.
Environ Res ; 186: 109549, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325291

RESUMEN

The frequent occurrence of toxin-producing cyanobacteria blooms driven by anthropogenic eutrophication has become a major threat to aquaculture ecosystems worldwide. In this study, the behavior of M. aeruginosa cells during flocs storage period of 6 days was first investigated after pre-oxidation and coagulation of Fe2+/PS. Fe2+/PS achieved a superior removal efficiency of 90.7% for OD680 and 90.4% for chl-a. The contents of extracellular MCs in the pre-oxidation and coagulation system were significantly (P < 0.05) lower than those in the control. A significant (P < 0.05) difference in intracellular protein between the control and the coagulated systems was observed. Three-dimensional fluorescence excitation emission matrix (EEM) was employed to investigate the variations in extracellular organic matter (EOM) during flocs storage. The results indicated the presence of four peaks, representing protein-like substances, intermediate dissolved microbial metabolites, fulvic and humic-like compounds in the Fe2+/PS process. And the intensities of four peaks were all decreased in the Fe2+/PS system compared to those in the control. A low level of accumulated residual Fe of 0.28 mg/L was observed without posing potential environmental risk. The results showed that the M. aeruginosa cells were under stressful conditions after 3-d storage due to the decomposition of extracellular polymeric substances (EPSs) and the insufficient supply of nutrients. However, SEM results indicated that no significant alteration in cell morphology was observed. Therefore, with high removal of M. aeruginosa, low MCs concentrations, and trivial cell damage, the Fe2+/PS preoxidation-coagulation was proved to be an environmental-friendly method for cyanobacteria removal without yielding serious secondary pollution. This work will contribute to better understanding and managing the cyanobacteria-laden aquaculture water after pre-oxidation and coagulation.


Asunto(s)
Microcystis , Purificación del Agua , Ecosistema , Floculación , Microcistinas
20.
Biotechnol Lett ; 42(3): 453-460, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31863218

RESUMEN

OBJECTIVE: To determine the effect of large genomic region deletion in a Saccharomyces cerevisiae strain on tyrosine yield and to identify new genetic modification targets through transcriptome analysis. RESULTS: TAL was used to produce p-coumaric acid (p-CA) from tyrosine to quantity tyrosine yield. S. cerevisiae mutant strain NK14 with deletion of a 23.8 kb genomic region was identified to have p-CA production of 10.3 mg L- 1, while the wild-type strain BY4741 had p-CA production of 1.06 mg L- 1. Analysis of growth patterns and stress tolerance showed that the deletion did not affect the growth phenotype of NK14. Transcriptome analysis suggested that, compared to BY4741, genes related to glycolysis (ENO2, TKL1) and the tyrosine pathway (ARO1, ARO2, ARO4, ARO7, TYR1) were upregulated in NK14 at different levels. Besides genes related to the tyrosine biosynthetic pathway, amino acid transporters (AVT6, VBA5, THI72) and transcription factor (ARO80) also showed changes in transcription levels. CONCLUSIONS: We developed a strain with improved tyrosine yield and identified new genetic modification candidates for tyrosine production.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Eliminación de Secuencia , Transcriptoma , Tirosina/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Tirosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA