Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3133-3141, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477056

RESUMEN

Liquid manipulation is essential for daily life and modern industry, and it is widely used in various fields, including seawater desalination, microfluidic robots, and biomedical engineering. Nevertheless, the current research focuses on the manipulation of individual droplets. There are a few projects for water film management. Here, we proposed a facile method of wind-triggered water film self-sculpturing based on a heterogeneous wettability surface, which is achieved by the femtosecond laser direct writing technology and femtosecond laser deposition. Under the conditions of various airflow velocities and water film thicknesses, three distinct behaviors of the water film were analyzed. As a result, when the water film thickness is lower than 4.9 mm, the self-sculpture process will occur until the whole superhydrophobic surface dewetting. Four potential applications are demonstrated, including encryption, oil containers, reconfigurable patterning, and self-splitting devices. This work provides a new approach for manipulating a water film of fluid control engineering.

2.
Mater Horiz ; 11(21): 5409-5418, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39172388

RESUMEN

A reversible liquid gating membrane with the ability to regulate gas/liquid transport is critical for many fields, such as biological applications, multiphase separation, and sewerage treatment. Numerous membranes can respond to external stimuli and dynamically control gas/liquid fluid transport; however, simultaneously achieving regulated gas/liquid transport membranes through simple manufacturing remains a challenge. In this work, we investigated an alcohol-regulation gating membrane via femtosecond laser one-step processing, allowing in situ dynamically controllable gas/liquid transfer. More specifically, the porous membrane, processed by laser, exhibits excellent superhydrophobicity (WCA ∼ 153.4°) and breathability (water-vapor evaporation rates ∼118.3 mg (cm2 h)-1), enabling gas to penetrate but not water. In contrast, it allows the passage of water while preventing the permeation of gas subsequent to the introduction of alcohol. Furthermore, the porous membrane still possesses superbly consistent performance after being placed in air for 90 days or over 100 dropping-drying ethanol cycles test, indicating outstanding durability and reversibility. Significantly, the porous membrane has broad potential applications in medical dressings, providing a new strategy to fabricate next-generation bandages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA