Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(12): 5557-5566, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412381

RESUMEN

Wet flue gas denitrification offers a new route to convert industrial nitrogen oxides (NOx) into highly concentrated nitrate wastewater, from which the nitrogen resource can be recovered to ammonia (NH3) via electrochemical nitrate reduction reactions (NITRRs). Low-cost, scalable, and efficient cathodic materials need to be developed to enhance the NH3 production rate. Here, in situ electrodeposition was adopted to fabricate a foamy Cu-based heterojunction electrode containing both Cu-defects and oxygen vacancy loaded Cu2O (OVs-Cu2O), which achieved an NH3 yield rate of 3.59 mmol h-1 cm-2, NH3 Faradaic efficiency of 99.5%, and NH3 selectivity of 100%. Characterizations and theoretical calculations unveiled that the Cu-defects and OVs-Cu2O heterojunction boosted the H* yield, suppressed the hydrogen evolution reaction (HER), and served as dual reaction sites to coherently match the tandem reactions kinetics of NO3-to-NO2 and NO2-to-NH3. An integrated system was further built to combine wet flue gas denitrification and desulfurization, simultaneously converting NO and SO2 to produce the (NH4)2SO4 fertilizer. This study offers new insights into the application of low-cost Cu-based cathode for electrochemically driven wet denitrification wastewater valorization.


Asunto(s)
Amoníaco , Aguas Residuales , Nitratos/química , Dióxido de Nitrógeno , Desnitrificación , Electrodos
2.
BMC Chem ; 18(1): 72, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609951

RESUMEN

Toluene, a prominent member of volatile organic compounds (VOCs), exerts a substantial adverse influence on both human life and the environment. In the context of advanced oxidation processes, the ·OH radical emerges as a highly efficient oxidant, pivotal in the elimination of VOCs. This study employs computational quantum chemistry methods (G4MP2//B3LYP/6-311++G(d,p)) to systematically investigate the degradation of toluene by ·OH radicals in an implicit solvent model, and validates the rationale of choosing a single-reference method using T1 diagnostics. Our results suggest three possible reaction mechanisms for the oxidation of toluene by ·OH: firstly, the phenyl ring undergoes a hydrogen abstraction reaction followed by direct combination with ·OH to form cresol; secondly, ·OH directly adds to the phenyl ring, leading to ring opening; thirdly, oxidation of sidechain to benzoic acid followed by further addition and ring opening. The last two oxidation pathways involve the ring opening of toluene via the addition of ·OH, significantly facilitating the process. Therefore, both pathways are considered feasible for the degradation of toluene. Subsequently, the UV-H2O2 system was designed to induce the formation of ·OH for toluene degradation and to identify the optimal reaction conditions. It was demonstrated that ·OH and 1O2 are the primary active species for degrading toluene, with their contribution ranking as ·OH > 1O2. The intermediates in the mixture solution after reactions were characterized using GC-MS, demonstrating the validity of theoretical predictions. A comparative study of the toluene consumption rate revealed an experimental comprehensive activation energy of 10.33 kJ/mol, which is consistent with the preliminary activation energies obtained via theoretical analysis of these three mechanisms (0.56 kJ/mol to 13.66 kJ/mol), indicating that this theoretical method can provide a theoretical basis for experimental studies on the oxidation of toluene by ·OH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA