Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 5759626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509835

RESUMEN

Background: Arachidonic acid (ARA) metabolites are involved in the pathogenesis of epithelial-mesenchymal transformation (EMT). However, the role of ARA metabolism in the progression of EMT during pulmonary fibrosis (PF) has not been fully elucidated. The purpose of this study was to investigate the role of cytochrome P450 oxidase (CYP)/soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) metabolic disorders of ARA in EMT during PF. Methods: A signal intratracheal injection of bleomycin (BLM) was given to induce PF in C57BL/6 J mice. A COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation to EMT in PF mice. In vitro experiments, murine alveolar epithelial cells (MLE12) and human alveolar epithelial cells (A549) were used to explore the roles and mechanisms of PTUPB on transforming growth factor (TGF)-ß1-induced EMT. Results: PTUPB treatment reversed the increase of mesenchymal marker molecule α-smooth muscle actin (α-SMA) and the loss of epithelial marker molecule E-cadherin in lung tissue of PF mice. In vitro, COX-2 and sEH protein levels were increased in TGF-ß1-treated alveolar epithelial cells (AECs). PTUPB decreased the expression of α-SMA and restored the expression of E-cadherin in TGF-ß1-treated AECs, accompanied by reduced migration and collagen synthesis. Moreover, PTUPB attenuated TGF-ß1-Smad2/3 pathway activation in AECs via Nrf2 antioxidant cascade. Conclusion: PTUPB inhibits EMT in AECs via Nrf2-mediated inhibition of the TGF-ß1-Smad2/3 pathway, which holds great promise for the clinical treatment of PF.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Cadherinas/metabolismo , Ciclooxigenasa 2/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Fibrosis Pulmonar/patología , Pirazoles , Sulfonamidas , Factor de Crecimiento Transformador beta1/metabolismo
3.
PLoS One ; 12(5): e0175807, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28459804

RESUMEN

BACKGROUND: Skeletal myoblast transplantation seems a promising approach for the repair of myocardial infarction (MI). However, the low engraftment efficacy and impaired angiogenic ability limit the clinical efficiency of the myoblasts. Gene engineering with angiogenic growth factors promotes angiogenesis and enhances engraftment of transplanted skeletal myoblasts, leading to improved infarction recovery in myocardial ischemia. The present study evaluated the therapeutic effects of hepatocyte growth factor (HGF) gene-engineered skeletal myoblasts on tissue regeneration and restoration of heart function in a rat MI model. METHODS AND RESULTS: The skeletal myoblasts were isolated, expanded, and transduced with adenovirus carrying the HGF gene (Ad-HGF). Male SD rats underwent ligation of the left anterior descending coronary artery. After 2 weeks, the surviving rats were randomized into four groups and treated with skeletal myoblasts by direct injection into the myocardium. The survival and engraftment of skeletal myoblasts were determined by real-time PCR and in situ hybridization. The cardiac function with hemodynamic index and left ventricular architecture were monitored; The adenovirus-mediated-HGF gene transfection increases the HGF expression and promotes the proliferation of skeletal myoblasts in vitro. Transplantation of HGF-engineered skeletal myoblasts results in reduced infarct size and collagen deposition, increased vessel density, and improved cardiac function in a rat MI model. HGF gene modification also increases the myocardial levels of HGF, VEGF, and Bcl-2 and enhances the survival and engraftment of skeletal myoblasts. CONCLUSIONS: HGF engineering improves the regenerative effect of skeletal myoblasts on MI by enhancing their survival and engraftment ability.


Asunto(s)
Trasplante de Células , Factor de Crecimiento de Hepatocito/genética , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/trasplante , Isquemia Miocárdica/terapia , Adenoviridae/genética , Animales , Supervivencia Celular/fisiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis/patología , Fibrosis/fisiopatología , Fibrosis/terapia , Ingeniería Genética , Vectores Genéticos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hemodinámica/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Masculino , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Neovascularización Fisiológica/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Regeneración/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA