RESUMEN
The phylum Crenarchaeota includes hyperthermophilic micro-organisms subjected to dynamic thermal conditions. Previous transcriptomic studies of Sulfolobus solfataricus identified vapBC6 as a heat-shock (HS)-inducible member of the Vap toxin-antitoxin gene family. In this study, the inactivation of the vapBC6 operon by targeted gene disruption produced two recessive phenotypes related to fitness, HS sensitivity and a heat-dependent reduction in the rate of growth. In-frame vapBC6 deletion mutants were analyzed to examine the respective roles of each protein. Since vapB6 transcript abundance was elevated in the vapC6 deletion, the VapC6 toxin appears to regulate abundance of its cognate antitoxin. In contrast, vapC6 transcript abundance was reduced in the vapB6 deletion. A putative intergenic terminator may underlie these observations by coordinating vapBC6 expression. As predicted by structural modeling, recombinant VapC6 produced using chaperone cosynthesis exhibited heat-dependent ribonucleolytic activity toward S. solfataricus total RNA. This activity could be blocked by addition of preheated recombinant VapB6. In vivo transcript targets were identified by assessing the relative expression of genes that naturally respond to thermal stress in VapBC6-deficient cells. Preferential increases were observed for dppB-1 and tetR, and preferential decreases were observed for rpoD and eIF2 gamma. Specific VapC6 ribonucleolytic action could also be demonstrated in vitro toward RNAs whose expression increased in the VapBC6-deficient strain during heat shock. These findings provide a biochemical mechanism and identify cellular targets underlying VapBC6-mediated control over microbial growth and survival at temperature extremes.
Asunto(s)
Adaptación Fisiológica/genética , ARN/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/fisiología , Temperatura , Toxinas Biológicas/genética , Adaptación Fisiológica/fisiología , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Hidrólisis/efectos de los fármacos , Modelos Biológicos , ARN/efectos de los fármacos , Sulfolobus solfataricus/metabolismo , Toxinas Biológicas/metabolismo , Toxinas Biológicas/farmacología , Toxinas Biológicas/fisiologíaRESUMEN
Sulfolobus solfataricus is a thermoacidophilic member of the archaea whose envelope consists of an ether-linked lipid monolayer surrounded by a protein S-layer. Protein translocation across this envelope must accommodate a steep proton gradient that is subject to temperature extremes. To better understand this process in vivo, studies were conducted on the S. solfataricus glycosyl hydrolyase family 57 α-Amylase (AmyA). Cell lines harboring site specific modifications of the amyA promoter and AmyA structural domains were created by gene replacement using markerless exchange and characterized by Western blot, enzyme assay and culture-based analysis. Fusion of amyA to the malAp promoter overcame amyAp-mediated regulatory responses to media composition including glucose and amino acid repression implicating action act at the level of transcription. Deletion of the AmyA Class II N-terminal signal peptide blocked protein secretion and intracellular protein accumulation. Deletion analysis of a conserved bipartite C-terminal motif consisting of a hydrophobic region followed by several charged residues indicated the charged residues played an essential role in membrane-association but not protein secretion. Mutants lacking the C-terminal bipartite motif exhibited reduced growth rates on starch as the sole carbon and energy source; therefore, association of AmyA with the membrane improves carbohydrate utilization. Widespread occurrence of this motif in other secreted proteins of S. solfataricus and of related Crenarchaeota suggests protein association with membranes is a general trait used by these organisms to influence external processes.