Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Small ; : e2306541, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409478

RESUMEN

Bismuth (Bi) is regarded as a promising anode material for potassium ion batteries (PIBs) due to its high theoretical capacity, but the huge volume expansion during potassiation and intrinsic low conductivity cause poor cycle stability and rate capability. Herein, a unique Bi nanoparticles/reduced graphene oxide (rGO) composite is fabricated by anchoring the Bi nanoparticles over the rGO substrate through a ball-milling and thermal reduction process. As depicted by the in-depth XPS analysis, strong interfacial Bi-C bonding can be formed between Bi and rGO, which is beneficial for alleviating the huge volume expansion of Bi during potassiation, restraining the aggregation of Bi nanoparticles and promoting the interfacial charge transfer. Theoretical calculation reveals the positive effect of rGO to enhance the potassium adsorption capability and interfacial electron transfer as well as reduce the diffusion energy barrier in the Bi/rGO composite. Thereby, the Bi/rGO composite exhibits excellent potassium storage performances in terms of high capacity (384.8 mAh g-1 at 50 mA g-1 ), excellent cycling stability (197.7 mAh g-1 after 1000 cycles at 500 mA g-1 with no capacity decay) and superior rate capability (55.6 mAh g-1 at 2 A g-1 ), demonstrating its great potential as an anode material for PIBs.

2.
Small ; 19(39): e2302330, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259262

RESUMEN

Selective oxidation of biomass-based molecules to high-value chemicals in conjunction with hydrogen evolution reaction (HER) is an innovative photocatalysis strategy. The key challenge is to design bifunctional photocatalysts with suitable band structures, which can achieve highly efficient generation of high-value chemicals and hydrogen. Herein, NiS/Cd0.6 Zn0.4 S Schottky junction bifunctional catalysts are constructed for sunlight-driven catalytic vanillyl alcohol (VAL) selective oxidation towards vanillin (VN) coupling HER. At optimal conditions, the 8% NiS/Cd0.6 Zn0.4 S photocatalyst achieves high activity of VN production (3.75 mmol g-1 h-1 ) and HER (3.84 mmol g-1 h-1 ). It also exhibits remarkable VAL conversion (66.9%), VN yield (52.1%), and selectivity (77.8%). The photocatalytic oxidation of VAL proceeds a carbon-centered radical mechanism via the cleavage of αC-H bond. Experimental results and theoretical calculations show that NiS with metallic properties enhances the electron transfer capability. Importantly, a Ni-S-Cd "electron bridge" formed at the interface of NiS/Cd0.6 Zn0.4 S further improves the separation/transfer of electrone/h+ pairs and also furnishes HER active sites due to its smaller the |ΔGH* | value, thereby resulting in a remarkably HER activity. This work sheds new light on the selective catalytic oxidation VAL to VN coupling HER, with a new pathway towards achieving its efficient HER efficiency.

3.
Sensors (Basel) ; 20(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881686

RESUMEN

Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pg·mL-1 to 50 ng.mL-1 with signal sensitivity achievable up to 0.15 pg·mL-1. The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.


Asunto(s)
Biomarcadores/análisis , Técnicas Biosensibles , Técnicas Electroquímicas , Grafito/química , Nanosferas/química , Tungsteno/química , Animales , Bovinos , Cobre , Polipéptido alfa Relacionado con Calcitonina/análisis , Albúmina Sérica Bovina/química
4.
Sci Rep ; 14(1): 2453, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291040

RESUMEN

The construction of highly efficient electrode material is of considerable interest, particularly for high capacitance and water-splitting applications. Herein, we present the preparation of a NiCo2O4-Chitosan (NC@Chit) nanocomposite using a simple hydrothermal technique designed for applications in high capacitance and water-splitting. The structure/composition of the NC@Chit composite was characterized using different analytical methods, containing electron microscope (SEM and TEM), and powder X-ray diffraction (XRD). When configured as an anode material, the NC@Chit displayed a high capacitance of 234 and 345 F g-1 (@1Ag-1 for GC/NC and NC@Chit, respectively) in an alkaline electrolyte. The direct use of the catalyst in electrocatalytic water-splitting i.e., HER and OER achieved an overpotential of 240 mV and 310 mV at a current density of 10 mA cm-2, respectively. The obtained Tafel slopes for OER and HER were 62 and 71 mV dec-1, respectively whereas the stability and durability of the fabricated electrodes were assessed through prolonged chronoamperometry measurement at constant for 10 h. The electrochemical water splitting was studied for modified nickel cobaltite surface using an impedance tool, and the charge transfer resistances were utilized to estimate the electrode activity.

5.
Food Chem ; 449: 139256, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636286

RESUMEN

In this report, we firstly synthesized nitro calix [4] resorcinarene compound (referred as KA30) and characterized it though proton (1H) nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and Fourier Transform Infra-red (FTIR) spectroscopy. KA30 was applied as functionalizing agent for the formation of silver nanoparticles (KA30-AgNPs). These NPs were confirmed as highly selective and extremely sensitive colorimetric sensor for ultra-low level detection of emamectin (EMA) as a novel report. Significant aspect of the sensor is its unique detection range between 0.0005 and 29.5 µM via color change from yellow to colorless with hypochromic-bathochromic shift exhibiting limit of detection (LOD) and limit of quantification (LOQ) as 0.12 nM and 0.4 nM respectively. The sensor was applied to colorimetrically and optically detect EMA in real samples of serum, urine and food. The sensor was further allied with smartphone for real-time, and on-site detection of EMA and results were validated through UPLC.


Asunto(s)
Colorimetría , Contaminación de Alimentos , Ivermectina , Nanopartículas del Metal , Plata , Teléfono Inteligente , Plata/química , Colorimetría/métodos , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/análisis , Límite de Detección , Calixarenos/química , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
6.
Small Methods ; 7(11): e2300708, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605458

RESUMEN

Potassium-ion batteries (KIBs) have recently attracted considerable attention owing to their resource abundance, low cost and environmental friendliness. Graphite as a mature commercial anode material for lithium-ion batteries, has been proved as a promising anode candidate for KIBs by reversible forming potassium-graphite intercalation compounds. However, large volume expansion and sluggish K+ kinetics caused by the incompatibility between large radius of K+ and the small interlayer spacing of graphite, result in the poor cycle stability and rate performances, hindering its practical application. Extensive research efforts have focused on improving the potassium storage performance of graphite anodes. This review provides an overview of recent advances in addressing these challenges and optimizing the electrochemical performance of graphite anodes for KIBs. Various strategies to improve the electrochemical performance of graphite and graphitic carbon anodes, such as microcrystalline regulation, heteroatom doping, morphological adjustment, and coating modification, are discussed, while the critical issues and challenges associated with graphite anodes and the prospects for their advancement in KIBs are highlighted. The review offers valuable guidelines for rational structural design and promotes the commercial development of high-performance graphite anode materials for KIBs.

7.
J Colloid Interface Sci ; 630(Pt A): 365-374, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36265338

RESUMEN

Bismuth-based materials are regarded as promising anode materials for potassium ion batteries (PIBs) due to their high theoretical capacity and low working potential. However, the large volume expansion and sluggish kinetics during cycling are major limitations to their practical application. Herein, a unique Bi/Bi2O3-C heterostructure was designed through a simple Bi-metal-organic framework (MOF) modulation-pyrolysis process. X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray diffraction revealed that the Bi and Bi2O3 can form hetero-particles, which were uniformly embedded in a plate-like carbon skeleton, constructing a Bi/Bi2O3-C heterostructure. The carbon skeleton and the formation of numerous hetero-interfaces between Bi, Bi2O3, and carbon can effectively promote the interfacial charge transfer, shorten the K+ diffusion pathway, and alleviate the volume expansion of Bi/Bi2O3 during potassiation. Consequently, the Bi/Bi2O3-C heterostructure exhibited a high reversible capacity of 426.0 mAh g-1 at 50 mA g-1, excellent cycle performance of 251.8 mAh g-1 after 350 cycles with a capacity retention of 76.6 %, and superior rate capability of 82.7 mAh g-1 at 1 A g-1, demonstrating its promising potential for the application of PIBs anode.

8.
Micromachines (Basel) ; 14(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838187

RESUMEN

Layered double hydroxides (LDH) are regarded as attractive pseudocapacitive materials due to their impressive capacitive qualities that may be adjustable to their morphological features. However, the layered structure of LDH renders them susceptible to structural aggregation, which inhibits effective electrolyte transport and limits their practical applicability after limited exposure to active areas. Herein, we propose a simple template-free strategy to synthesize hierarchical hollow sphere NiMn-LDH material with high surface area and exposed active as anode material for supercapacitor application. The template-free approach enables the natural nucleation of Ni-Mn ions resulting in thin sheets that self-assemble into a hollow sphere, offering expended interlayer spaces and abundant redox-active active sites. The optimal NiMn-LDH-12 achieved a specific capacitance of 1010.4 F g-1 at a current density of 0.2 A g-1 with capacitance retention of 70% at 5 A g-1 after 5000 cycles with lower charge transfer impedance. When configured into an asymmetric supercapacitors (ASC) device as NiMn-LDH//AC, the material realized a specific capacitance of 192.4 F g-1 at a current density of 0.2 A g-1 with a good energy density of 47.9 Wh kg-1 and a power density of 196.8 W kg-1. The proposed morphological-tuning route is promising for designing template-free NiMn-LDHs spheres with practical pseudocapacitive characteristics.

9.
Adv Sci (Weinh) ; 9(20): e2200023, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35508900

RESUMEN

Sodium-ion batteries (SIBs) are regarded as a kind of promising candidate for large-scale energy storage technology. The development of advanced carbon anodes with high Na-storage capacity and initial Coulombic efficiency (ICE) from low cost, resources abundant precursors is critical for SIBs. Here, a carbon microcrystalline hybridization route to synthesize hard carbons with extensive pseudo-graphitic regions from lignite coal with the assistance of sucrose is proposed. Employing the cross-linked interaction between sucrose and lignite coal to generate carbon-based hybrid microcrystalline states, the obtained hard carbons possess pseudo-graphitic dominant phases with large interlayer spaces that facilitate Na ion's storage and transportation, as well as fewer surface defects that guarantee high ICE. The LCS-73 with an optimum cross-link demonstrates the highest Na-storage capacity of 356 mAh g-1 and an ICE of 82.9%. The corresponding full-cell delivers a high energy density of 240 Wh kg-1 (based on the mass of anode and cathode materials) and excellent rate capability of 106 mAh g-1 at 10 C in addition to outstanding cycle performance with 80% retention over 500 cycles at 2 C. The proposed work offers an efficient route to develop high-performance, low-cost carbon-based anode materials with potential application for advanced SIBs.

10.
Biosensors (Basel) ; 12(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35448291

RESUMEN

MXenes-Ti3C2Tx, based on their versatile surface characteristics, has rapidly advanced as an interactive substrate to develop electrochemical sensors for clinical applications. Herein, Ni embedded Ti3C2Tx (MX-Ni) composites were prepared using a self-assembly approach where Ti3C2Tx sheets served as an interactive conductive substrate as well as a protective layer to nickel nanoparticles (Ni NPs), preventing their surface oxidation and aggregation. The composite displayed a cluster-like morphology with an intimate interfacial arrangement between Ni, Ti3C2Tx and Ti3C2Tx-derived TiO2. The configuration of MX-Ni into an electrochemical sensor realized a robust cathodic reduction current against methylmalonic acid (MMA), a biomarker to vitamin B12 deficiency. The synergism of Ni NPs strong redox characteristics with conductive Ti3C2Tx enabled sensitive signal output in wide detection ranges of 0.001 to 0.003 µM and 0.0035 to 0.017 µM and a detection sensitivity down to 0.12 pM of MMA. Importantly, the sensor demonstrated high signal reproducibility and excellent operational capabilities for MMA in a complex biological matrix such as human urine samples.


Asunto(s)
Ácido Metilmalónico , Nanopartículas , Electrodos , Humanos , Reproducibilidad de los Resultados , Titanio
11.
Environ Sci Pollut Res Int ; 29(56): 84410-84420, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35779221

RESUMEN

Graphene oxide (GO) is an excellent membrane-forming material with unique two-dimensional transport channels and excellent adsorption properties for heavy metal contaminants. However, swelling under cross-flow conditions and long-term water immersion leads to poor separation performances. To improve the stability of GO membrane materials, we propose a PVA-integrated graphene oxide/attapulgite membrane (GOAP) with a 3D microstructural arrangement of "brick-mortar-brick." The addition of PVA as mortar reinforces the strength of the structures via induced hydrogen bonding within the 3D water transport network. Furthermore, the Al2O3 ceramic substrate pre-treated with (3-aminopropyl) triethoxysilane (APTES) provided high mechanical stability to the composite membrane, extending the membrane's stability beyond a month of immersion without swelling or shedding. The PVA-integrated GO/ATP composite membrane maintained a rejection rate of 99% for Cu2+ solution (100 mg/L) in a 26-h continuous with nearly 100% rejection for various metals ions such as Cu2+, Ni2+, Pb2+, and Cd2+. The membrane exhibited a water flux of 20.7 L·m-2·h-1, which was 15.9-fold high than the pure GO membrane (GOM). The high water flux and heavy metal filtration rate with superior stability proved the practical suitability of the composite film for removing heavy metal ions.


Asunto(s)
Metales Pesados , Iones , Agua
12.
RSC Adv ; 11(42): 26110-26119, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35479438

RESUMEN

The overall cost and efficiency of an adsorbent material is a major issue in deriving a sorbent into commercial markets. In this study, efforts have been directed to produce adsorption-capable zeolites from the dispensable product of coal power plants, i.e., coal fly ash (CFA). In addition, coal mining water (CW) was used as a direct hydrothermal solvent. The mine water from China's coal mines was used in this experiment to substitute tap water (TP) for synthesizing zeolite from C-type fly ashes with different crystallization temperatures (45 to 95 °C). Here, CW led to the formation of X-type and A-type zeolites of comparable size. Regarding the proper utilization of waste products, i.e., coal fly ash and mine water, the study paves a simple yet extremely cost-effective approach to synthesize workable zeolitic materials for adsorption purposes. The detailed characterization justified the use of CW as a better solvent than TP to prepare zeolites based on their better granular size and fewer carbon impurities. The prepared zeolites were later used as an adsorbent for the trace removal of ceftazidime (CAZ), taken as a model pharmaceutical pollutant. The zeolites prepared using CW realised a higher adsorption capacity of 80 mg g-1 during 20 min of agitation time. The pH, concentration, and external salt effects were also studied to achieve maximum removal efficiency. In general, the proposed approach enables the production of affordable yet efficient zeolite-based adsorbent materials without consuming any toxic and expensive reagents for practical application in environmental remediations.

13.
Nano Converg ; 8(1): 5, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594612

RESUMEN

MXenes have recently been recognized as potential materials based on their unique physical and chemical characteristics. The widely growing family of MXenes is rapidly expanding their application domains since their first usage as energy materials was reported in 2011. The inherent chemical nature, high hydrophilicity, and robust electrochemistry regard MXenes as a promising avenue for environment-remediation technologies such as adsorption, membrane separation, photocatalysis and the electrocatalytic sensor designed for pollutant detection. As the performance of MXenes in these technologies is on a continuous path to improvement, this review intends to cumulatively discuss the diversity and chemical abilities of MXenes and their hybrid composites in the fields mentioned above with a focus on MXenes improving surface-characteristics. The review is expected to promote the diversity of MXenes and their hybrid configuration for advanced technologies widely applied for environmental remediation.

14.
Biosens Bioelectron ; 166: 112439, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32862843

RESUMEN

Interfacial charge-carrier recombination is a bottle-neck issue restricting photoelectrochemical biosensors advancement in the wearable clinical electronics. In this study, we propose a simple approach to construct a highly efficient photoactive heterojunction capable of functioning as an active substrate in PEC biosensing of CD44 proteins. Taking the advantage of high photocatalytic activity of BiVO4, and biocompatible yet conductive 2D-Ti3C2Tx nanosheets, a workable heterojunction was constructed between in-situ formed TiO2 from the partially oxidized Ti3C2Tx and lysine functionalized BiVO4 (TiO2/MX-BiVO4). The interfacial arrangement was ideal for promoting fast charge transfer from photo-excited BiVO4 and TiO2 to Ti3C2Tx, constructing an energy level-cascade that permits minimal charge-carrier recombination besides robust photocatalytic redox activity. The PEC biosensor relies on the ligand-protein interaction, where hyaluronic acid was directly immobilized over TiO2/MX-BiVO4 based on the interactions between carboxyl of lysine and amino moieties of hyaluronic acid. The PEC biosensor response depends on the inhibition in the measured photo-oxidation current of mediator species, i.e., ascorbic acid after the addition of CD44 proteins. The superior photo-activity, and robust heterojunction arrangement, produced a sensitive signal capable of recognizing CD44 in the wide concentration window of 2.2 × 10-4 ng mL-1 to 3.2 ng mL-1 with a low-detection limit of 1.4 × 10-2 pg mL-1. The strong interaction between lysine functionalized BiVO4 and hyaluronic acid enabled biosensor to exhibit robust antifouling characteristics towards similar proteins such as PSA and NSE. The quantification of CD44 protein from real-blood serum samples further confirmed the biosensor's reliability for clinical application.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Titanio
15.
Biosens Bioelectron ; 141: 111331, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31233985

RESUMEN

This study describes the construction of highly-sensitive photo-electrochemical (PEC) immunosensor for the detection of neuron-specific enolase (NSE). The biosensing platform is comprised of photo-active NiWO4 nanostructures, in-situ-grown over a conductive substrate (indium tin oxide) using a low-temperature template-based co-precipitation approach. The discussed approach enables the formation of discrete, yet morphologically-analogous, nanostructures with complete coverage (pinhole-free) of the electrode surface. The in-situ-grown nanostructure possess dense population with sharp saw-blade like morphological features that can support substantial immobilisation of anti-NSE agent. The constructed platform demonstrated excellent photo-catalytic activity towards uric acid (UA) which served as the base for the Electrochemical -mechanism (EC) based PEC inhibition sensing. The detection of NSE, relied on its obstruction in analytical signal observed for the photo-oxidation of UA after binding to the electrode surface via protein-antibody interaction. The constructed PEC immunosensor exhibits signal sensitivity up to 0.12 ng mL-1 of NSE with excellent signal reproducibility and electrode replicability. Moreover, the constructed platform was successfully used for NSE determination in human serum samples.


Asunto(s)
Técnicas Biosensibles/métodos , Nanoestructuras/química , Níquel/química , Óxidos/química , Fosfopiruvato Hidratasa/sangre , Tungsteno/química , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Inmunoensayo/métodos , Luz , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Fosfopiruvato Hidratasa/análisis , Compuestos de Estaño/química
16.
Anal Chim Acta ; 948: 30-39, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27871607

RESUMEN

This study describes sensitive determination of atropine using glassy carbon electrodes (GCE) modified with Co3O4 nanostructures. The as-synthesised nanostructures were grown using cysteine (CYS), glutathione (GSH) and histidine (HYS) as effective templates under hydrothermal action. The obtained morphologies revealed interesting structural features, including both cavity-based and flower-shaped structures. The as-synthesised morphologies were noted to actively participate in electro-catalysis of atropine (AT) drug where GSH-assisted structures exhibited the best signal response in terms of current density and over-potential value. The study also discusses the influence of functional groups on the signal sensitivity of atropine electro-oxidation. The functionalisation was carried with the amino acids originally used as effective templates for the growth of Co3O4 nanostructures. The highest increment was obtained when GSH was used as the surface functionalising agent. The GSH-functionalised Co3O4-modified electrode was utilised for the electro-chemical sensing of AT in a concentration range of 0.01-0.46 µM. The developed sensor exhibited excellent working linearity (R2 = 0.999) and signal sensitivity up to 0.001 µM of AT. The noted high sensitivity of the sensor is associated with the synergy of superb surface architectures and favourable interaction facilitating the electron transfer kinetics for the electro-catalytic oxidation of AT. Significantly, the developed sensor demonstrated excellent working capability when used for AT detection in human urine samples with strong anti-interference potential against common co-existing species, such as glucose, fructose, cysteine, uric acid, dopamine and ascorbic acid.


Asunto(s)
Atropina/análisis , Cobalto/química , Nanopartículas del Metal/química , Óxidos/química , Atropina/orina , Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Glutatión/química , Humanos , Límite de Detección , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA