Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Environ Microbiol ; 80(18): 5854-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038093

RESUMEN

Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


Asunto(s)
Antígenos Bacterianos/metabolismo , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretoras/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Transporte de Proteínas , Salmonella typhimurium/genética
2.
Microb Cell Fact ; 11: 85, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22709508

RESUMEN

BACKGROUND: The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a ß-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the Escherichia coli AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the Mycobacterium tuberculosis vaccine target ESAT6 as a model protein. RESULTS: Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a ß-helical core structure (ß-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of E. coli. On the other hand, Hbp-ESAT6 fusions containing a truncated ß-stem appeared unstable after translocation, demonstrating the importance of an intact ß-stem. By interrupting the cleavage site between passenger and ß-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated Salmonella typhimurium strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development. CONCLUSIONS: We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.


Asunto(s)
Antígenos Bacterianos/metabolismo , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Antígenos Bacterianos/genética , Endopeptidasas/genética , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Mycobacterium tuberculosis/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmonella typhimurium/metabolismo
3.
J Biol Chem ; 285(49): 38224-33, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20923769

RESUMEN

Autotransporters are bacterial virulence factors that share a common mechanism by which they are transported to the cell surface. They consist of an N-terminal passenger domain and a C-terminal ß-barrel, which has been implicated in translocation of the passenger across the outer membrane (OM). The mechanism of passenger translocation and folding is still unclear but involves a conserved region at the C terminus of the passenger domain, the so-called autochaperone domain. This domain functions in the stepwise translocation process and in the folding of the passenger domain after translocation. In the autotransporter hemoglobin protease (Hbp), the autochaperone domain consists of the last rung of the ß-helix and a capping domain. To examine the role of this region, we have mutated several conserved aromatic residues that are oriented toward the core of the ß-helix. We found that non-conservative mutations affected secretion with Trp(1015) in the cap region as the most critical residue. Substitution at this position yielded a DegP-sensitive intermediate that is located at the periplasmic side of the OM. Further analysis revealed that Trp(1015) is most likely required for initiation of processive folding of the ß-helix at the cell surface, which drives sequential translocation of the Hbp passenger across the OM.


Asunto(s)
Endopeptidasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Pliegue de Proteína , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
Microbiology (Reading) ; 155(Pt 12): 3982-3991, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19815580

RESUMEN

Autotransporters are large virulence factors secreted by Gram-negative bacteria. They are synthesized with a C-terminal domain that forms a beta-barrel pore in the outer membrane implicated in translocation of the upstream 'passenger' domain across the outer membrane. However, recent structural data suggest that the diameter of the beta-barrel pore is not sufficient to allow the passage of partly folded structures observed for several autotransporters. Here, we have used a stalled translocation intermediate of the autotransporter Hbp to identify components involved in insertion and translocation of the protein across the outer membrane. At this intermediate stage the beta-domain was not inserted and folded as an integral beta-barrel in the outer membrane whereas part of the passenger was surface exposed. The intermediate was copurified with the periplasmic chaperone SurA and subunits of the Bam (Omp85) complex that catalyse the insertion and assembly of outer-membrane proteins. The data suggest a critical role for this general machinery in the translocation of autotransporters across the outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Virulencia/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico Activo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cisteína/química , Endopeptidasas/química , Endopeptidasas/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Genes Bacterianos , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Virulencia/química , Factores de Virulencia/genética
5.
J Mol Biol ; 412(4): 553-67, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21806993

RESUMEN

Autotransporters (ATs) of Gram-negative bacteria contain an N-proximal passenger domain that is transported to the extracellular milieu and a C-terminal ß-domain that inserts into the outer membrane (OM) in a ß-barrel conformation. This ß-domain facilitates translocation of the passenger domain across the OM and has long been considered to be the translocation pore. However, available crystal structures of ß-domains show that the ß-barrel pore is too narrow for the observed transport of folded elements within the passenger domains. ATs have recently been shown to interact with the ß-barrel assembly machinery. These findings questioned a direct involvement of the ß-domain in passenger translocation and suggested that it may only target the passenger to the ß-barrel assembly machinery pore. To address the function of the ß-domain in more detail, we have replaced the ß-domain of the Escherichia coli AT hemoglobin protease by ß-domains originating from other OM proteins. Furthermore, we have modified the diameter of the ß-domain pore. The mutant proteins were analyzed for their capacity to insert into the OM and for surface display of the passenger. Our results show that efficient passenger secretion requires a specific ß-domain that not only functions as a targeting device but also is directly involved in the translocation of the passenger to the cell surface.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Membrana Celular/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Modelos Biológicos , Modelos Moleculares , Organismos Modificados Genéticamente , Pliegue de Proteína , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/genética , Especificidad por Sustrato
6.
FEBS J ; 276(17): 4891-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19664056

RESUMEN

The mechanosensitive channel with large conductance (MscL) of Escherichia coli is formed by a homopentameric assembly of MscL proteins. Here, we describe MscL biogenesis as determined using in vivo approaches. Evidence is presented that MscL is targeted to the inner membrane via the signal recognition particle (SRP) pathway, and is inserted into the lipid bilayer independently of the Sec machinery. This is consistent with published data. Surprisingly, and in conflict with earlier data, YidC is not critical for membrane insertion of MscL. In the absence of YidC, assembly of the homopentameric MscL complex was strongly reduced, suggesting a late role for YidC in the biogenesis of MscL. The data are consistent with the view that YidC functions as a membrane-based chaperone 'module' to facilitate assembly of a subset of protein complexes in the inner membrane of E. coli.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Canales Iónicos/fisiología , Proteínas de Transporte de Membrana/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Membranas Intracelulares/metabolismo , Canales Iónicos/genética , Proteínas de Transporte de Membrana/genética , Mutación , Multimerización de Proteína , Partícula de Reconocimiento de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA