Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(4): 984-1002.e36, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675503

RESUMEN

Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.


Asunto(s)
Población Negra/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Genómica , Femenino , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Uganda/epidemiología , Secuenciación Completa del Genoma
2.
Nature ; 616(7955): 123-131, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991119

RESUMEN

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Asunto(s)
Enfermedad de la Arteria Coronaria , Multiómica , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Metabolómica/métodos , Fenotipo , Proteómica/métodos , Aprendizaje Automático , Negro o Afroamericano/genética , Asiático/genética , Pueblo Europeo/genética , Reino Unido , Conjuntos de Datos como Asunto , Internet , Reproducibilidad de los Resultados , Estudios de Cohortes , Proteoma/análisis , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Datos Factuales
3.
Annu Rev Genomics Hum Genet ; 24: 277-303, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196361

RESUMEN

Recent advancements in single-cell technologies have enabled expression quantitative trait locus (eQTL) analysis across many individuals at single-cell resolution. Compared with bulk RNA sequencing, which averages gene expression across cell types and cell states, single-cell assays capture the transcriptional states of individual cells, including fine-grained, transient, and difficult-to-isolate populations at unprecedented scale and resolution. Single-cell eQTL (sc-eQTL) mapping can identify context-dependent eQTLs that vary with cell states, including some that colocalize with disease variants identified in genome-wide association studies. By uncovering the precise contexts in which these eQTLs act, single-cell approaches can unveil previously hidden regulatory effects and pinpoint important cell states underlying molecular mechanisms of disease. Here, we present an overview of recently deployed experimental designs in sc-eQTL studies. In the process, we consider the influence of study design choices such as cohort, cell states, and ex vivo perturbations. We then discuss current methodologies, modeling approaches, and technical challenges as well as future opportunities and applications.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Mapeo Cromosómico , Proyectos de Investigación
4.
Nature ; 577(7789): 179-189, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915397

RESUMEN

A primary goal of human genetics is to identify DNA sequence variants that influence biomedical traits, particularly those related to the onset and progression of human disease. Over the past 25 years, progress in realizing this objective has been transformed by advances in technology, foundational genomic resources and analytical tools, and by access to vast amounts of genotype and phenotype data. Genetic discoveries have substantially improved our understanding of the mechanisms responsible for many rare and common diseases and driven development of novel preventative and therapeutic strategies. Medical innovation will increasingly focus on delivering care tailored to individual patterns of genetic predisposition.


Asunto(s)
Variación Genética , Animales , Pruebas Genéticas , Genómica , Genotipo , Humanos , Fenotipo , Enfermedades Raras/genética
5.
Hum Mol Genet ; 32(5): 790-797, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36136759

RESUMEN

Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.


Asunto(s)
Eosinófilos , Estudio de Asociación del Genoma Completo , Humanos , Cromosomas Humanos Par 11 , Polimorfismo de Nucleótido Simple , Inmunidad Innata
6.
Am J Hum Genet ; 109(6): 1038-1054, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35568032

RESUMEN

Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.


Asunto(s)
Exoma , Exoma/genética , Frecuencia de los Genes/genética , Humanos , Estudios Prospectivos , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma
7.
Hum Mol Genet ; 31(14): 2333-2347, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35138379

RESUMEN

Previous genome-wide association studies (GWAS) of hematological traits have identified over 10 000 distinct trait-specific risk loci. However, at these loci, the underlying causal mechanisms remain incompletely characterized. To elucidate novel biology and better understand causal mechanisms at known loci, we performed a transcriptome-wide association study (TWAS) of 29 hematological traits in 399 835 UK Biobank (UKB) participants of European ancestry using gene expression prediction models trained from whole blood RNA-seq data in 922 individuals. We discovered 557 gene-trait associations for hematological traits distinct from previously reported GWAS variants in European populations. Among the 557 associations, 301 were available for replication in a cohort of 141 286 participants of European ancestry from the Million Veteran Program. Of these 301 associations, 108 replicated at a strict Bonferroni adjusted threshold ($\alpha$= 0.05/301). Using our TWAS results, we systematically assigned 4261 out of 16 900 previously identified hematological trait GWAS variants to putative target genes. Compared to coloc, our TWAS results show reduced specificity and increased sensitivity in external datasets to assign variants to target genes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Bancos de Muestras Biológicas , Células Sanguíneas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Transcriptoma/genética , Reino Unido
8.
Nat Rev Genet ; 19(2): 110-124, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29225335

RESUMEN

Genetic architecture describes the characteristics of genetic variation that are responsible for heritable phenotypic variability. It depends on the number of genetic variants affecting a trait, their frequencies in the population, the magnitude of their effects and their interactions with each other and the environment. Defining the genetic architecture of a complex trait or disease is central to the scientific and clinical goals of human genetics, which are to understand disease aetiology and aid in disease screening, diagnosis, prognosis and therapy. Recent technological advances have enabled genome-wide association studies and emerging next-generation sequencing studies to begin to decipher the nature of the heritable contribution to traits and disease. Here, we describe the types of genetic architecture that have been observed, how architecture can be measured and why an improved understanding of genetic architecture is central to future advances in the field.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Estudio de Asociación del Genoma Completo , Humanos
9.
Nature ; 558(7708): 73-79, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875488

RESUMEN

Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.


Asunto(s)
Proteínas Sanguíneas/genética , Genómica , Proteoma/genética , Femenino , Factor de Crecimiento de Hepatocito/genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Masculino , Mutación Missense/genética , Mieloblastina/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas/genética , Sitios de Carácter Cuantitativo/genética , Vasculitis/genética , alfa 1-Antitripsina/genética
10.
PLoS Genet ; 16(3): e1008605, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150548

RESUMEN

Circulating metabolite levels are biomarkers for cardiovascular disease (CVD). Here we studied, association of rare variants and 226 serum lipoproteins, lipids and amino acids in 7,142 (discovery plus follow-up) healthy participants. We leveraged the information from multiple metabolite measurements on the same participants to improve discovery in rare variant association analyses for gene-based and gene-set tests by incorporating correlated metabolites as covariates in the validation stage. Gene-based analysis corrected for the effective number of tests performed, confirmed established associations at APOB, APOC3, PAH, HAL and PCSK (p<1.32x10-7) and identified novel gene-trait associations at a lower stringency threshold with ACSL1, MYCN, FBXO36 and B4GALNT3 (p<2.5x10-6). Regulation of the pyruvate dehydrogenase (PDH) complex was associated for the first time, in gene-set analyses also corrected for effective number of tests, with IDL and LDL parameters, as well as circulating cholesterol (pMETASKAT<2.41x10-6). In conclusion, using an approach that leverages metabolite measurements obtained in the same participants, we identified novel loci and pathways involved in the regulation of these important metabolic biomarkers. As large-scale biobanks continue to amass sequencing and phenotypic information, analytical approaches such as ours will be useful to fully exploit the copious amounts of biological data generated in these efforts.


Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/genética , Variación Genética/genética , Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Lipoproteínas/sangre , Masculino , Fenotipo , Triglicéridos/sangre
11.
Pancreatology ; 22(4): 449-456, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35331647

RESUMEN

BACKGROUND: Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions. METHODS: We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants. RESULTS: Variants at the CTRC (p = 1.22 × 10-21) and SPINK1 (p = 6.59 × 10-47) risk loci reached genome-wide significance in NACP. CTRC risk variants colocalized with CTRC eQTLs in ACP (PP4 = 0.99, PP4/PP3 = 95.51) and NACP (PP4 = 0.99, PP4/PP3 = 95.46). For both diseases, the 95% credible set of shared causal variants consisted of rs497078 and rs545634. CLDN2-MORC4 risk variants colocalized with CLDN2 eQTLs in ACP (PP4 = 0.98, PP4/PP3 = 42.20) and NACP (PP4 = 0.67, PP4/PP3 = 7.18), probably driven by the shared causal variant rs12688220. CONCLUSIONS: A shared causal CTRC risk variant might unfold its pathogenic effect in ACP and NACP by reducing CTRC expression, while the CLDN2-MORC4 shared causal variant rs12688220 may modify ACP and NACP risk by increasing CLDN2 expression.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pancreatitis Alcohólica , Teorema de Bayes , Predisposición Genética a la Enfermedad , Humanos , Proteínas Nucleares , Páncreas , Pancreatitis Alcohólica/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Inhibidor de Tripsina Pancreática de Kazal/genética
12.
Platelets ; 33(6): 869-878, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35068290

RESUMEN

Higher body mass index (BMI) is a risk factor for thrombosis. Platelets are essential for hemostasis but contribute to thrombosis when activated pathologically. We hypothesized that higher BMI leads to changes in platelet characteristics, thereby increasing thrombotic risk. The effect of BMI on platelet traits (measured by Sysmex) was explored in 33 388 UK blood donors (INTERVAL study). Linear regression showed that higher BMI was positively associated with greater plateletcrit (PCT), platelet count (PLT), immature platelet count (IPC), and side fluorescence (SFL, a measure of mRNA content used to derive IPC). Mendelian randomization (MR), applied to estimate a causal effect with BMI proxied by a genetic risk score, provided causal estimates for a positive effect of BMI on both SFL and IPC, but there was little evidence for a causal effect of BMI on PCT or PLT. Follow-up analyses explored the functional relevance of platelet characteristics in a pre-operative cardiac cohort (COPTIC). Linear regression provided observational evidence for a positive association between IPC and agonist-induced whole blood platelet aggregation. Results indicate that higher BMI raises the number of immature platelets, which is associated with greater whole blood platelet aggregation in a cardiac cohort. Higher IPC could therefore contribute to obesity-related thrombosis.


Asunto(s)
Plaquetas , Trombosis , Índice de Masa Corporal , Humanos , Obesidad/complicaciones , Recuento de Plaquetas , Trombosis/etiología
13.
Int J Obes (Lond) ; 45(10): 2221-2229, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34226637

RESUMEN

BACKGROUND: Variation in adiposity is associated with cardiometabolic disease outcomes, but mechanisms leading from this exposure to disease are unclear. This study aimed to estimate effects of body mass index (BMI) on an extensive set of circulating proteins. METHODS: We used SomaLogic proteomic data from up to 2737 healthy participants from the INTERVAL study. Associations between self-reported BMI and 3622 unique plasma proteins were explored using linear regression. These were complemented by Mendelian randomisation (MR) analyses using a genetic risk score (GRS) comprised of 654 BMI-associated polymorphisms from a recent genome-wide association study (GWAS) of adult BMI. A disease enrichment analysis was performed using DAVID Bioinformatics 6.8 for proteins which were altered by BMI. RESULTS: Observationally, BMI was associated with 1576 proteins (P < 1.4 × 10-5), with particularly strong evidence for a positive association with leptin and fatty acid-binding protein-4 (FABP4), and a negative association with sex hormone-binding globulin (SHBG). Observational estimates were likely confounded, but the GRS for BMI did not associate with measured confounders. MR analyses provided evidence for a causal relationship between BMI and eight proteins including leptin (0.63 standard deviation (SD) per SD BMI, 95% CI 0.48-0.79, P = 1.6 × 10-15), FABP4 (0.64 SD per SD BMI, 95% CI 0.46-0.83, P = 6.7 × 10-12) and SHBG (-0.45 SD per SD BMI, 95% CI -0.65 to -0.25, P = 1.4 × 10-5). There was agreement in the magnitude of observational and MR estimates (R2 = 0.33) and evidence that proteins most strongly altered by BMI were enriched for genes involved in cardiovascular disease. CONCLUSIONS: This study provides evidence for a broad impact of adiposity on the human proteome. Proteins strongly altered by BMI include those involved in regulating appetite, sex hormones and inflammation; such proteins are also enriched for cardiovascular disease-related genes. Altogether, results help focus attention onto new proteomic signatures of obesity-related disease.


Asunto(s)
Adiposidad/fisiología , Proteoma/análisis , Adulto , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Estudios Prospectivos , Proteoma/metabolismo , Encuestas y Cuestionarios
14.
Nature ; 526(7571): 82-90, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26367797

RESUMEN

The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.


Asunto(s)
Enfermedad/genética , Variación Genética/genética , Genoma Humano/genética , Salud , Adiponectina/sangre , Alelos , Estudios de Cohortes , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Receptores de LDL/genética , Estándares de Referencia , Análisis de Secuencia de ADN , Triglicéridos/sangre , Reino Unido
15.
Am J Hum Genet ; 99(2): 481-8, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27486782

RESUMEN

Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.38 × 10(-10)) and a rare synonymous variant in GFI1B (rs150813342, MAF = 0.009, discovery + replication p = 1.79 × 10(-27)). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up targeted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryocyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can provide insight into the regulation of human hematopoiesis.


Asunto(s)
Empalme Alternativo/genética , Análisis Mutacional de ADN , Exoma/genética , Sitios Genéticos/genética , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Plaquetas/citología , Sistemas CRISPR-Cas , Edición Génica , Células Madre Hematopoyéticas/citología , Humanos , Megacariocitos/citología , Recuento de Plaquetas
17.
Am J Transplant ; 18(6): 1370-1379, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29392897

RESUMEN

Improvements in immunosuppression have modified short-term survival of deceased-donor allografts, but not their rate of long-term failure. Mismatches between donor and recipient HLA play an important role in the acute and chronic allogeneic immune response against the graft. Perfect matching at clinically relevant HLA loci does not obviate the need for immunosuppression, suggesting that additional genetic variation plays a critical role in both short- and long-term graft outcomes. By combining patient data and samples from supranational cohorts across the United Kingdom and European Union, we performed the first large-scale genome-wide association study analyzing both donor and recipient DNA in 2094 complete renal transplant-pairs with replication in 5866 complete pairs. We studied deceased-donor grafts allocated on the basis of preferential HLA matching, which provided some control for HLA genetic effects. No strong donor or recipient genetic effects contributing to long- or short-term allograft survival were found outside the HLA region. We discuss the implications for future research and clinical application.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trasplante de Riñón , Donantes de Tejidos , Receptores de Trasplantes , Adulto , Replicación del ADN , Femenino , Genotipo , Supervivencia de Injerto/inmunología , Prueba de Histocompatibilidad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Trasplante Homólogo
18.
Nature ; 477(7362): 54-60, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21886157

RESUMEN

Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.


Asunto(s)
Investigación Biomédica , Industria Farmacéutica , Variación Genética , Estudio de Asociación del Genoma Completo , Metabolismo/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Sangre/metabolismo , Niño , Enfermedad Crónica , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus/genética , Femenino , Sitios Genéticos/genética , Genotipo , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Farmacogenética , Insuficiencia Renal/genética , Factores de Riesgo , Tromboembolia Venosa/genética , Adulto Joven
19.
PLoS Genet ; 10(7): e1004450, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010335

RESUMEN

The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits.


Asunto(s)
Diferenciación Celular/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Animales , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Pez Cebra/sangre
20.
PLoS Genet ; 10(4): e1004234, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743097

RESUMEN

Many existing cohorts contain a range of relatedness between genotyped individuals, either by design or by chance. Haplotype estimation in such cohorts is a central step in many downstream analyses. Using genotypes from six cohorts from isolated populations and two cohorts from non-isolated populations, we have investigated the performance of different phasing methods designed for nominally 'unrelated' individuals. We find that SHAPEIT2 produces much lower switch error rates in all cohorts compared to other methods, including those designed specifically for isolated populations. In particular, when large amounts of IBD sharing is present, SHAPEIT2 infers close to perfect haplotypes. Based on these results we have developed a general strategy for phasing cohorts with any level of implicit or explicit relatedness between individuals. First SHAPEIT2 is run ignoring all explicit family information. We then apply a novel HMM method (duoHMM) to combine the SHAPEIT2 haplotypes with any family information to infer the inheritance pattern of each meiosis at all sites across each chromosome. This allows the correction of switch errors, detection of recombination events and genotyping errors. We show that the method detects numbers of recombination events that align very well with expectations based on genetic maps, and that it infers far fewer spurious recombination events than Merlin. The method can also detect genotyping errors and infer recombination events in otherwise uninformative families, such as trios and duos. The detected recombination events can be used in association scans for recombination phenotypes. The method provides a simple and unified approach to haplotype estimation, that will be of interest to researchers in the fields of human, animal and plant genetics.


Asunto(s)
Haplotipos/genética , Mapeo Cromosómico/métodos , Efecto de Cohortes , Familia , Genotipo , Humanos , Modelos Genéticos , Linaje , Fenotipo , Recombinación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA