Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916275

RESUMEN

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Asunto(s)
Artemisininas/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptores de GABA-A/metabolismo , Transducción de Señal , Animales , Arteméter , Artemisininas/administración & dosificación , Proteínas Portadoras/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Estabilidad Proteica/efectos de los fármacos , Ratas , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Pez Cebra , Ácido gamma-Aminobutírico/metabolismo
2.
Connect Tissue Res ; 63(2): 124-137, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33535825

RESUMEN

PURPOSE/AIM: Volumetric muscle loss (VML) is a devastating orthopedic injury resulting in chronic persistent functional deficits, loss of joint range of motion, pathologic fibrotic deposition and lifelong disability. However, there is only limited mechanistic understanding of VML-induced fibrosis. Herein we examined the temporal changes in the fibrotic deposition at 3, 7, 14, 28, and 48 days post-VML injury. MATERIALS AND METHODS: Adult male Lewis rats (n = 39) underwent a full thickness ~20% (~85 mg) VML injury to the tibialis anterior (TA) muscle unilaterally, the contralateral TA muscle served as the control group. All TA muscles were harvested for biochemical and histologic evaluation. RESULTS: The ratio of collagen I/III was decreased at 3, 7, and 14 days post-VML, but significantly increased at 48 days. Decorin content followed an opposite trend, significantly increasing by day 3 before dropping to below control levels by 48 days. Histological evaluation of the defect area indicates a shift from loosely packed collagen at early time points post-VML, to a densely packed fibrotic scar by 48 days. CONCLUSIONS: The shift from early wound healing efforts to a fibrotic scar with densely packed collagen within the skeletal muscle occurs around 21 days after VML injury through dogmatic synchronous reduction of collagen III and increase in collagen I. Thus, there appears to be an early window for therapeutic intervention to prevent pathologic fibrous tissue formation, potentially by targeting CCN2/CTGF or using decorin as a therapeutic.


Asunto(s)
Enfermedades Musculares , Regeneración , Animales , Cicatriz/patología , Colágeno , Colágeno Tipo I , Decorina , Matriz Extracelular/patología , Fibrosis , Masculino , Músculo Esquelético/patología , Enfermedades Musculares/patología , Ratas , Ratas Endogámicas Lew , Regeneración/fisiología
3.
Scand J Clin Lab Invest ; 82(2): 96-103, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253566

RESUMEN

Measurement of cardiac troponin (cTn) is the cornerstone in the diagnosis of myocardial infarction (MI). Potential disparities in concentrations of cTn, trajectories and mortality, following initial measurement warrant further investigation. Such data may guide clinicians treating patients suspected of MI. Plasma concentrations of cTnT and cTnI were measured in 503 consecutive patients at Aarhus University Hospital between June 13th and June 27th, 2019. cTnT was measured with the Roche cobas® E602 hs-cTnT assay, while cTnI was measured with the Siemens ADVIA Centaur® XPT hs-cTnI assay. Analytical agreement was determined based on assay-specific 99th percentiles. Medical records were reviewed for adjudication of the MI diagnosis. MI was the final diagnosis in 65 patients (12.9%) and the analytical agreement between cTnT and cTnI assays was 95.2%. For patients diagnosed with MI, cTnI reached higher peak concentrations in shorter time, compared to cTnT. All-cause mortality risk increased with increasing levels of both biomarkers. In this study, the analytical agreement of two cTn assays was high. However, some disparities in troponin trajectories were observed.


Asunto(s)
Infarto del Miocardio , Troponina T , Biomarcadores , Humanos , Infarto del Miocardio/diagnóstico , Estudios Prospectivos , Troponina I
4.
Eur J Neurosci ; 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33905587

RESUMEN

The pancreatic hormone amylin plays a central role in regulating energy homeostasis and glycaemic control by stimulating satiation and reducing food reward, making amylin receptor agonists attractive for the treatment of metabolic diseases. Amylin receptors consist of heterodimerized complexes of the calcitonin receptor and receptor-activity modifying proteins subtype 1-3 (RAMP1-3). Neuronal activation in response to amylin dosing has been well characterized, but only in selected regions expressing high levels of RAMPs. The current study identifies global brain-wide changes in response to amylin and by comparing wild type and RAMP1/3 knockout mice reveals the importance of RAMP1/3 in mediating this response. Amylin dosing resulted in neuronal activation as measured by an increase in c-Fos labelled cells in 20 brain regions, altogether making up the circuitry of neuronal appetite regulation (e.g., area postrema (AP), nucleus of the solitary tract (NTS), parabrachial nucleus (PB), and central amygdala (CEA)). c-Fos response was also detected in distinct nuclei across the brain that typically have not been linked with amylin signalling. In RAMP1/3 knockout amylin induced low-level neuronal activation in seven regions, including the AP, NTS and PB, indicating the existence of RAMP1/3-independent mechanisms of amylin response. Under basal conditions RAMP1/3 knockout mice show reduced neuronal activity in the hippocampal formation as well as reduced hippocampal volume, suggesting a role for RAMP1/3 in hippocampal physiology and maintenance. Altogether these data provide a global map of amylin response in the mouse brain and establishes the significance of RAMP1/3 receptors in relaying this response.

5.
Scand J Clin Lab Invest ; 81(6): 508-510, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34182857

RESUMEN

The increasing use of Point Of Care Testing (POCT) in the prehospital setting demands a high and consistent quality of blood samples. We have investigated the degree of haemolysis in 779 prehospital blood samples and found a significant increase in haemolysis compared to intrahospital samples. The degree of haemolysis was within acceptable limits for current analyses. However, haemolysis should be taken into account when implementing future analyses in the prehospital field.


Asunto(s)
Recolección de Muestras de Sangre , Hemólisis/fisiología , Hospitales , Anciano , Humanos
6.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669246

RESUMEN

The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1's dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation.


Asunto(s)
Envejecimiento/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Contracción Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Autofagosomas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Unión Neuromuscular/metabolismo , Fosforilación/genética , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
7.
FASEB J ; 33(9): 10353-10368, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31208207

RESUMEN

The purpose of this study was to test the hypothesis that macrophage polarization is altered in old compared to young skeletal muscle, possibly contributing to the poor satellite cell response observed in older muscle tissue. Muscle biopsies were collected prior to and at 3, 24, and 72 h following a muscle-damaging exercise in young and old individuals. Immunohistochemistry was used to measure i.m. macrophage content and phenotype, and cell culture experiments tested macrophage behavior and influence on primary myoblasts from older individuals. We found that macrophage infiltration was similar between groups at 24 (young: 3712 ± 2407 vs. old: 5035 ± 2978 cells/mm3) and 72 (young: 4326 ± 2622 vs. old: 5287 ± 2248 cells/mm3) hours postdamage, yet the proportion of macrophages that expressed the proinflammatory marker CD11b were markedly lower in the older subjects (young: 74.5 ± 15 vs. old: 52.6 ± 17%). This finding was coupled with a greater overall proportion of CD206+, anti-inflammatory macrophages in the old (group: P = 0.0005). We further demonstrate in vitro that proliferation, and in some cases differentiation, of old primary human myoblasts increase as much as 30% when exposed to a young macrophage-conditioned environment. Collectively, the data suggest that old macrophages appear less capable of adapting and maintaining inflammatory function, which may contribute to poor satellite cell activation and delayed recovery from muscle damage.-Sorensen, J. R., Kaluhiokalani, J. P., Hafen, P. S., Deyhle, M. R., Parcell, A. C., Hyldahl, R. D. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair.


Asunto(s)
Envejecimiento/patología , Ejercicio Físico/fisiología , Activación de Macrófagos/fisiología , Macrófagos/patología , Músculo Esquelético/fisiopatología , Mioblastos/patología , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Músculo Esquelético/lesiones , Fenotipo , Adulto Joven
8.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R512-R524, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789790

RESUMEN

Patients suffering from heart failure with reduced ejection fraction (HFrEF) experience impaired limb blood flow during exercise, which may be due to a disease-related increase in α-adrenergic receptor vasoconstriction. Thus, in eight patients with HFrEF (63 ± 4 yr) and eight well-matched controls (63 ± 2 yr), we examined changes in leg blood flow (Doppler ultrasound) during intra-arterial infusion of phenylephrine (PE; an α1-adrenergic receptor agonist) and phentolamine (Phen; a nonspecific α-adrenergic receptor antagonist) at rest and during dynamic single-leg knee-extensor exercise (0, 5, and 10 W). At rest, the PE-induced reduction in blood flow was significantly attenuated in patients with HFrEF (-15 ± 7%) compared with controls (-36 ± 5%). During exercise, the controls exhibited a blunted reduction in blood flow induced by PE (-12 ± 4, -10 ± 4, and -9 ± 2% at 0, 5, and 10 W, respectively) compared with rest, while the PE-induced change in blood flow was unchanged compared with rest in the HFrEF group (-8 ± 5, -10 ± 3, and -14 ± 3%, respectively). Phen administration increased leg blood flow to a greater extent in the HFrEF group at rest (+178 ± 34% vs. +114 ± 28%, HFrEF vs. control) and during exercise (36 ± 6, 37 ± 7, and 39 ± 6% vs. 13 ± 3, 14 ± 1, and 8 ± 3% at 0, 5, and 10 W, respectively, in HFrEF vs. control). Together, these findings imply that a HFrEF-related increase in α-adrenergic vasoconstriction restrains exercising skeletal muscle blood flow, potentially contributing to diminished exercise capacity in this population.


Asunto(s)
Arterias/inervación , Tolerancia al Ejercicio , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/irrigación sanguínea , Receptores Adrenérgicos beta 1/metabolismo , Volumen Sistólico , Sistema Nervioso Simpático/fisiopatología , Vasoconstricción , Función Ventricular Izquierda , Antagonistas Adrenérgicos/administración & dosificación , Anciano , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Tolerancia al Ejercicio/efectos de los fármacos , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/metabolismo , Humanos , Extremidad Inferior , Masculino , Persona de Mediana Edad , Contracción Muscular , Flujo Sanguíneo Regional , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasodilatación
9.
J Interv Cardiol ; 2019: 7348167, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31772545

RESUMEN

BACKGROUND: The transradial approach is generally associated with few complications. However, periprocedural pain is still a common issue, potentially related to sheath insertion and/or arterial spasm, and may result in conversion to femoral access. Radial artery occlusion (RAO) following the procedure is also a potential risk. We evaluate whether the design of the sheath has any impact on these variables. METHODS: A total of 1,000 patients scheduled for radial CAG or PCI were randomized (1:1) to the use of a Slender or a Standard sheath during the procedure. Randomization was stratified according to chosen sheath size (5, 6, 7 French) and gender. A radial band was used to obtain hemostasis after the procedure, employing a rapid deflation technique. A reverse Barbeau test was performed to evaluate radial artery patency after removal of the radial band, and level of pain was assessed using a numeric rating scale (NRS). RESULTS: Use of the Slender sheath was associated with less pain during sheath insertion (median NRS 1 versus 2, p=0.02), whereas no difference was observed in pain during the procedure, radial procedural success rates, use of analgesics and sedatives during the procedure, and radial artery patency following the procedure. Rate of RAO was 1.5% with no difference between groups. CONCLUSION: The use of the hydrophilic coated Slender sheath during radial CAG or PCI was associated with less pain during sheath insertion, whereas no difference in other endpoints was observed. A rapid deflation technique was associated with RAO of only 1.5%.


Asunto(s)
Cateterismo Periférico , Angiografía Coronaria , Dolor Asociado a Procedimientos Médicos , Arteria Radial , Anciano , Cateterismo Periférico/efectos adversos , Cateterismo Periférico/instrumentación , Cateterismo Periférico/métodos , Angiografía Coronaria/efectos adversos , Angiografía Coronaria/instrumentación , Angiografía Coronaria/métodos , Dinamarca , Diseño de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Dimensión del Dolor , Dolor Asociado a Procedimientos Médicos/diagnóstico , Dolor Asociado a Procedimientos Médicos/etiología , Dolor Asociado a Procedimientos Médicos/prevención & control , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/instrumentación , Intervención Coronaria Percutánea/métodos , Arteria Radial/fisiopatología , Arteria Radial/cirugía , Grado de Desobstrucción Vascular
10.
Am J Physiol Heart Circ Physiol ; 314(4): H796-H804, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351470

RESUMEN

The central nervous system plays an important role in essential hypertension in humans and in animal models of hypertension through modulation of sympathetic activity and Na+ and body fluid homeostasis. Data from animal models of hypertension suggest that the renin-angiotensin system in the subfornical organ (SFO) of the brain is critical for hypertension development. We recently reported that the brain (pro)renin receptor (PRR) is a novel component of the brain renin-angiotensin system and could be a key initiator of the pathogenesis of hypertension. Here, we examined the expression level and cellular distribution of PRR in the SFO of postmortem human brains to assess its association with the pathogenesis of human hypertension. Postmortem SFO tissues were collected from hypertensive and normotensive human subjects. Immunolabeling for the PRR and a retrospective analysis of clinical data were performed. We found that human PRR was prominently expressed in most neurons and microglia, but not in astrocytes, in the SFO. Importantly, PRR levels in the SFO were elevated in hypertensive subjects. Moreover, PRR immunoreactivity was significantly correlated with systolic blood pressure but not body weight, age, or diastolic blood pressure. Interestingly, this correlation was independent of antihypertensive drug therapy. Our data indicate that PRR in the SFO may be a key molecular player in the pathogenesis of human hypertension and, as such, could be an important focus of efforts to understand the neurogenic origin of hypertension. NEW & NOTEWORTHY This study provides evidence that, in the subfornical organ of the human brain, the (pro)renin receptor is expressed in neurons and microglia cells but not in astrocytes. More importantly, (pro)renin receptor immunoreactivity in the subfornical organ is increased in hypertensive humans and is significantly correlated with systolic blood pressure.


Asunto(s)
Hipertensión/enzimología , Receptores de Superficie Celular/análisis , Órgano Subfornical/enzimología , ATPasas de Translocación de Protón Vacuolares/análisis , Anciano , Autopsia , Presión Sanguínea , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Inmunohistoquímica , Masculino , Microglía/enzimología , Persona de Mediana Edad , Neuronas/enzimología , Estudios Retrospectivos , Órgano Subfornical/fisiopatología , Regulación hacia Arriba
11.
Biomarkers ; 22(3-4): 351-360, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27903076

RESUMEN

PURPOSE: In patients with a suspected acute myocardial infarction (AMI), to evaluate the potential for early triage based on measurement of high-sensitivity cardiac troponin T (hs-cTnT) and copeptin in blood samples collected in the prehospital phase. MATERIALS AND METHODS: In this retrospective study, we measured hs-cTnT and copeptin in blood samples collected in the ambulance form 962 patients with suspected AMI. The diagnostic accuracy was estimated by receiver-operating characteristic (ROC) curve area under the curve (AUC) for both biomarkers and a combined model. Multivariable Cox regression modelling was used to estimate the predictive value of both biomarkers. RESULTS: In total, 178 (19%) cases had AMI. The AUC for hs-cTnT was 0.81. Adding copeptin increased the AUC to 0.85 (p = 0.004) and the combined model allowed a prehospital rule-out of 45% of cases without AMI (negative predictive value, NPV 98%). Both biomarkers are highly predictive of outcome. CONCLUSIONS: A future application of hs-cTnT and copeptin measurement, performed already in the prehospital phase, could potentially improve the prehospital diagnostic and prognostic classification of patients with a suspected AMI.


Asunto(s)
Glicopéptidos/sangre , Infarto del Miocardio/diagnóstico , Troponina T/sangre , Anciano , Área Bajo la Curva , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos , Resultado del Tratamiento
12.
Org Biomol Chem ; 15(46): 9809-9823, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29019511

RESUMEN

Boron subphthalocyanines (SubPcs) are powerful chromophoric heterocycles that can be synthetically modified at both axial and peripheral positions. Acetylenic scaffolding offers the possibility of building large, unsaturated carbon-rich frameworks that can exhibit excellent electron-accepting properties, and when combined with SubPcs it presents a convenient method for preparing interesting chromophore-acceptor architectures. Here we present synthetic methodologies for the post-functionalization of the relatively sensitive SubPc chromophore via acetylenic coupling reactions. By gentle AlCl3-mediated alkynylation at the axial boron position, we managed to anchor two SubPcs to the geminal positions of a tetraethynylethene (TEE) acceptor. Convenient conditions that allow for stepwise desilylations of trimethylsilyl (TMS) and triisopropylsilyl (TIPS) protected SubPc-decorated acetylenes using silver(i) fluoride were developed. The resulting terminal alkynes were successfully used as coupling partners in metal-catalyzed couplings, providing access to larger acetylenic SubPc scaffolds and multiple chromophore systems. Moreover, conditions allowing for the conversion of a terminal alkyne into an iodoalkyne in the presence of SubPc were developed, and the product was subjected to cross-coupling reactions affording unsymmetrical 1,3-butadiynes. The degree of interactions between two SubPc units as a function of the acetylenic bridge was studied by UV-Vis absorption spectroscopy and cyclic voltammetry. A TEE bridging unit was found to strongly influence the reductions and oxidations of the two SubPc units, while a more flexible bridge had no influence.

13.
Eur Heart J ; 42(2): 147-148, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33150397
14.
PLoS Genet ; 9(10): e1003934, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204325

RESUMEN

Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing ß-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into ß-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+) cells thereby generated being subsequently converted into ß-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated ß-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional ß-cell mass and thereby reverse diabetes following toxin-induced ß-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 1/genética , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/genética , Animales , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucagón/genética , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/biosíntesis , Humanos , Células Secretoras de Insulina/citología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones Transgénicos , Factores de Transcripción Paired Box/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis
15.
Am J Physiol Regul Integr Comp Physiol ; 309(4): R378-88, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26041112

RESUMEN

Currently, the physiological factors responsible for exercise intolerance and bioenergetic alterations with age are poorly understood due, at least in art, to the confounding effect of reduced physical activity in the elderly. Thus, in 40 healthy young (22 ± 2 yr) and old (74 ± 8 yr) activity-matched subjects, we assessed the impact of age on: 1) the relative contribution of the three major pathways of ATP synthesis (oxidative ATP synthesis, glycolysis, and the creatine kinase reaction) and 2) the ATP cost of contraction during high-intensity exercise. Specifically, during supramaximal plantar flexion (120% of maximal aerobic power), to stress the functional limits of the skeletal muscle energy systems, we used (31)P-labeled magnetic resonance spectroscopy to assess metabolism. Although glycolytic activation was delayed in the old, ATP synthesis from the main energy pathways was not significantly different between groups. Similarly, the inferred peak rate of mitochondrial ATP synthesis was not significantly different between the young (25 ± 8 mM/min) and old (24 ± 6 mM/min). In contrast, the ATP cost of contraction was significantly elevated in the old compared with the young (5.1 ± 2.0 and 3.7 ± 1.7 mM·min(-1)·W(-1), respectively; P < 0.05). Overall, these findings suggest that, when young and old subjects are activity matched, there is no evidence of age-related mitochondrial and glycolytic dysfunction. However, this study does confirm an abnormal elevation in exercise-induced skeletal muscle metabolic demand in the old that may contribute to the decline in exercise capacity with advancing age.


Asunto(s)
Adenosina Trifosfato/metabolismo , Envejecimiento/metabolismo , Metabolismo Energético , Ejercicio Físico , Contracción Muscular , Músculo Esquelético/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Forma MM de la Creatina-Quinasa/metabolismo , Femenino , Glucólisis , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Fatiga Muscular , Fosforilación Oxidativa , Factores de Tiempo , Adulto Joven
16.
Clin Sci (Lond) ; 126(8): 581-92, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24224517

RESUMEN

Impaired skeletal muscle efficiency potentially contributes to the age-related decline in exercise capacity and may explain the altered haemodynamic response to exercise in the elderly. Thus we examined whether (i) the ATP cost of contraction increases with age, and (ii) this results in altered convective O(2) delivery to maintain microvascular oxygenation in the calf muscle. To this aim, we used an integrative experimental approach combining (31)P-MRS (magnetic resonance spectroscopy), Doppler ultrasound imaging and NIRS (near-IR spectroscopy) during dynamic plantar flexion exercise at 40% of WR(max) (maximal power output) in 20 healthy young and 20 older subjects matched for physical activity. The ATP cost of contraction was significantly higher in the old (7.2±4.1 mM/min per W) compared with the young (2.4±1.9 mM/min per W; P<0.05) and this was only significantly correlated with the plantar flexion WR(max) value in the old subjects (r=-0.52; P<0.05). Even when differences in power output were taken into account, end-exercise blood flow (old, 259±168 ml/min per W and young, 134±40 ml/min per W; P<0.05) and convective O(2) delivery (old, 0.048±0.031 l/min per W and young, 0.026±0.008 l/min per W; P<0.05) were greater in the old in comparison with the young subjects. In contrast, the NIRS oxyhaemoglobin, deoxyhaemoglobin and microvascular oxygenation indices were not significantly different between the groups (P>0.05). Therefore the present study reveals that, although the peripheral haemodynamic responses to plantar flexion exercise appear to be appropriate, the elevated energy cost of contraction and associated reduction in the WR(max) value in this muscle group may play a role in limiting exercise capacity with age.


Asunto(s)
Adenosina Trifosfato/metabolismo , Envejecimiento/fisiología , Ejercicio Físico/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Espectroscopía Infrarroja Corta/métodos , Ultrasonografía Doppler , Adulto Joven
17.
Mol Metab ; 80: 101883, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237896

RESUMEN

OBJECTIVE: Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding. METHODS: Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression. RESULTS: TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice, and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures. CONCLUSION: The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose homeostasis and gastric emptying as well as central regulation of energy balance and food intake.


Asunto(s)
Corticosterona , Control Glucémico , Receptores Acoplados a Proteínas G , Humanos , Ratas , Ratones , Animales , Olanzapina , Peso Corporal , Aumento de Peso , Modelos Animales de Enfermedad , Glucosa
18.
Mol Metab ; 82: 101907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428817

RESUMEN

OBJECTIVES: There is significant interest in uncovering the mechanisms through which exercise enhances cognition, memory, and mood, and lowers the risk of neurodegenerative diseases. In this study, we utilize forced treadmill running and distance-matched voluntary wheel running, coupled with light sheet 3D brain imaging and c-Fos immunohistochemistry, to generate a comprehensive atlas of exercise-induced brain activation in mice. METHODS: To investigate the effects of exercise on brain activity, we compared whole-brain activation profiles of mice subjected to treadmill running with mice subjected to distance-matched wheel running. Male mice were assigned to one of four groups: a) an acute bout of voluntary wheel running, b) confinement to a cage with a locked running wheel, c) forced treadmill running, or d) placement on an inactive treadmill. Immediately following each exercise or control intervention, blood samples were collected for plasma analysis, and brains were collected for whole-brain c-Fos quantification. RESULTS: Our dataset reveals 255 brain regions activated by acute exercise in mice, the majority of which have not previously been linked to exercise. We find a broad response of 140 regulated brain regions that are shared between voluntary wheel running and treadmill running, while 32 brain regions are uniquely regulated by wheel running and 83 brain regions uniquely regulated by treadmill running. In contrast to voluntary wheel running, forced treadmill running triggers activity in brain regions associated with stress, fear, and pain. CONCLUSIONS: Our findings demonstrate a significant overlap in neuronal activation signatures between voluntary wheel running and distance-matched forced treadmill running. However, our analysis also reveals notable differences and subtle nuances between these two widely used paradigms. The comprehensive dataset is accessible online at www.neuropedia.dk, with the aim of enabling future research directed towards unraveling the neurobiological response to exercise.


Asunto(s)
Actividad Motora , Condicionamiento Físico Animal , Ratones , Masculino , Animales , Actividad Motora/fisiología , Encéfalo , Cognición
19.
Proc Natl Acad Sci U S A ; 107(34): 15099-104, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696901

RESUMEN

High-content screening for small-molecule inducers of insulin expression identified the compound BRD7389, which caused alpha-cells to adopt several morphological and gene expression features of a beta-cell state. Assay-performance profile analysis suggests kinase inhibition as a mechanism of action, and we show that biochemical and cellular inhibition of the RSK kinase family by BRD7389 is likely related to its ability induce a beta-cell-like state. BRD7389 also increases the endocrine cell content and function of donor human pancreatic islets in culture.


Asunto(s)
Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Insulina/biosíntesis , Inhibidores de Proteínas Quinasas/farmacología , Quinolonas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos , Expresión Génica/efectos de los fármacos , Células Secretoras de Glucagón/citología , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Quinolonas/química , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/genética , Técnicas de Cultivo de Tejidos
20.
Cardiovasc Res ; 119(8): 1728-1739, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37036809

RESUMEN

AIMS: Congenital heart disease (CHD) is the most common genetic birth defect, which has considerable morbidity and mortality. We focused on deciphering key regulators that govern cardiac progenitors and cardiogenesis. FOXK1 is a forkhead/winged helix transcription factor known to regulate cell cycle kinetics and is restricted to mesodermal progenitors, somites, and heart. In the present study, we define an essential role for FOXK1 during cardiovascular development. METHODS AND RESULTS: We used the mouse embryoid body system to differentiate control and Foxk1 KO embryonic stem cells into mesodermal, cardiac progenitor cells and mature cardiac cells. Using flow cytometry, immunohistochemistry, cardiac beating, transcriptional and chromatin immunoprecipitation quantitative polymerase chain reaction assays, bulk RNA sequencing (RNAseq) and assay for transposase-accessible chromatin using sequencing (ATACseq) analyses, FOXK1 was observed to be an important regulator of cardiogenesis. Flow cytometry analyses revealed perturbed cardiogenesis in Foxk1 KO embryoid bodies (EBs). Bulk RNAseq analysis at two developmental stages showed a significant reduction of the cardiac molecular program in Foxk1 KO EBs compared to the control EBs. ATACseq analysis during EB differentiation demonstrated that the chromatin landscape nearby known important regulators of cardiogenesis was significantly relaxed in control EBs compared to Foxk1 KO EBs. Furthermore, we demonstrated that in the absence of FOXK1, cardiac differentiation was markedly impaired by assaying for cardiac Troponin T expression and cardiac contractility. We demonstrate that FOXK1 is an important regulator of cardiogenesis by repressing the Wnt/ß-catenin signalling pathway and thereby promoting differentiation. CONCLUSION: These results identify FOXK1 as an essential transcriptional and epigenetic regulator of cardiovascular development. Mechanistically, FOXK1 represses Wnt signalling to promote the development of cardiac progenitor cells.


Asunto(s)
Células Madre Embrionarias , Corazón , Animales , Ratones , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA