Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene Ther ; 28(10-11): 646-658, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33558692

RESUMEN

CRISPR-Cas systems have emerged as a powerful tool to generate genetic models for studying normal and diseased central nervous system (CNS). Targeted gene disruption at specific loci has been demonstrated successfully in non-dividing neurons. Despite its simplicity, high specificity and low cost, the efficiency of CRISPR-mediated knockout in vivo can be substantially impacted by many parameters. Here, we used CRISPR-Cas9 to disrupt the neuronal-specific gene, NeuN, and optimized key parameters to achieve effective gene knockout broadly in the CNS in postnatal mice. Three cell lines and two primary neuron cultures were used to validate the disruption of NeuN by single-guide RNAs (sgRNA) harboring distinct spacers and scaffold sequences. This triage identified an optimal sgRNA design with the highest NeuN disruption in in vitro and in vivo systems. To enhance CRISPR efficiency, AAV-PHP.B, a vector with superior neuronal transduction, was used to deliver this sgRNA in Cas9 mice via neonatal intracerebroventricular (ICV) injection. This approach resulted in 99.4% biallelic indels rate in the transduced cells, leading to greater than 70% reduction of total NeuN proteins in the cortex, hippocampus and spinal cord. This work contributes to the optimization of CRISPR-mediated knockout and will be beneficial for fundamental and preclinical research.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Animales , Sistema Nervioso Central , Edición Génica/métodos , Técnicas de Inactivación de Genes , Ratones , Neuronas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
2.
Biofabrication ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39401530

RESUMEN

In the body, capillary beds fulfill the metabolic needs of cells by acting as the sites of diffusive transport for vital gasses and nutrients. In artificial tissues, replicating the scale and complexity of these capillary vessels has proved challenging, especially in a three-dimensional context. In order to better develop thick artificial tissues, it will be necessary to recreate both the form and function of capillaries. Here we demonstrate a top-down method of patterning hydrogels using sacrificial templates formed from thermoresponsive microfibers whose size and architecture approach those of natural capillaries. Within the resulting microchannels, we cultured endothelial monolayers that remain viable for over three weeks and exhibited functional barrier properties. Additionally, we cultured endothelialized microchannels within hydrogels containing fibroblasts and characterized the viability of the co-cultures to demonstrate this approach's potential to when applied to cell-laden hydrogels. This method represents a step forward in the evolution of artificial tissues and a path towards producing viable capillary-scale microvasculature for engineered organs.

3.
bioRxiv ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39464033

RESUMEN

siRNA therapeutics have considerable potential as molecularly-targeted therapeutics in malignant disease, but identification of effective delivery strategies that mediate rapid intracellular delivery while minimizing toxicity has been challenging. Our group recently developed and optimized an siRNA conjugate platform termed "siRNA-L 2 ," which harnesses non-covalent association with endogenous circulating albumin to extend circulation half-life and achieve tumor-selective delivery without the use of traditional cationic lipids or polymers for transfection. To improve intracellular delivery and particularly the endosomal escape properties of siRNA-L 2 towards more efficient gene silencing, we report synthesis of siRNA-CQ-L 2 conjugates, in which chloroquine (CQ), an endosomolytic quinoline alkaloid, is covalently incorporated into the branching lipid tail structure. We accomplished this via synthesis of a novel CQ phosphoramidite, which can be incorporated into a modular siRNA-L 2 backbone using on-column solid-phase synthesis through use of asymmetric branchers with levulinyl-protected hydroxide groups that allow covalent addition of pendant CQ repeats. We demonstrate that siRNA-CQ-L 2 maintains the ability to non-covalently bind albumin, and with multiple copies of CQ, siRNA-CQ-L 2 mediates higher endosomal disruption, cellular uptake/retention, and reporter gene knockdown in cancer cells. Further, in mice, the addition of CQ did not significantly affect circulation kinetics nor organ biodistribution and did not produce hematologic or organ-level toxicity. Thus, controlled, multivalent conjugation of albumin-binding siRNA-L 2 to endosomolytic small molecule compounds holds promise in improving siRNA-L 2 knockdown potency while maintaining albumin-binding properties and overall safety.

4.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645082

RESUMEN

Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced by the scaffold protein IQ motif containing GTPase activating protein 2 (IQGAP2). In mice and zebrafish, we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses also reveal that Alzheimer's disease is associated with reduced hippocampal IQGAP2. Overall, our results implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS.

5.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-38915549

RESUMEN

Short-interfering RNA (siRNA) has gained significant interest for treatment of neurological diseases by providing the capacity to achieve sustained inhibition of nearly any gene target. Yet, efficacious drug delivery throughout deep brain structures of the CNS remains a considerable hurdle for intrathecally administered therapeutics. We herein describe an albumin-binding lipid-siRNA conjugate that transports along meningeal and perivascular CSF pathways, leading to broad dispersion throughout the CNS parenchyma. We provide a detailed examination of the temporal kinetics of gene silencing, highlighting potent knockdown for up to five months from a single injection without detectable toxicity. Single-cell RNA sequencing further demonstrates gene silencing activity across diverse cell populations in the parenchyma and at brain borders, which may provide new avenues for neurological disease-modifying therapies.

6.
bioRxiv ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-37333210

RESUMEN

Osteoarthritis (OA) and rheumatoid arthritis (RA) are joint diseases that are associated with pain and lost quality of life. No disease modifying OA drugs are currently available. RA treatments are better established but are not always effective and can cause immune suppression. Here, an MMP13-selective siRNA conjugate was developed that, when delivered intravenously, docks onto endogenous albumin and promotes preferential accumulation in articular cartilage and synovia of OA and RA joints. MMP13 expression was diminished upon intravenous delivery of MMP13 siRNA conjugates, consequently decreasing multiple histological and molecular markers of disease severity, while also reducing clinical manifestations such as swelling (RA) and joint pressure sensitivity (RA and OA). Importantly, MMP13 silencing provided more comprehensive OA treatment efficacy than standard of care (steroids) or experimental MMP inhibitors. These data demonstrate the utility of albumin 'hitchhiking' for drug delivery to arthritic joints, and establish the therapeutic utility of systemically delivered anti-MMP13 siRNA conjugates in OA and RA. Editorial summary: Lipophilic siRNA conjugates optimized for albumin binding and "hitchhiking" can be leveraged to achieve preferential delivery to and gene silencing activity within arthritic joints. Chemical stabilization of the lipophilic siRNA enables intravenous siRNA delivery without lipid or polymer encapsulation. Using siRNA sequences targeting MMP13, a key driver of arthritis-related inflammation, albumin hitchhiking siRNA diminished MMP13, inflammation, and manifestations of osteoarthritis and rheumatoid arthritis at molecular, histological, and clinical levels, consistently outperforming clinical standards of care and small molecule MMP antagonists.

7.
Cell Mol Bioeng ; 15(2): 161-173, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35401842

RESUMEN

Introduction: Short interfering RNAs (siRNAs) are potent nucleic acid-based drugs designed to target disease driving genes that may otherwise be undruggable with small molecules. However, therapeutic potential of siRNA in vivo is limited by poor pharmacokinetic properties, including rapid renal clearance and nuclease degradation. Backpacking on natural carriers such as albumin, which is present at high concentration and has a long half-life in serum, is an effective way to modify pharmacokinetics of biologic drugs that otherwise have poor bioavailability. In this work, we sought to develop albumin-binding aptamer-siRNA chimeras to improve the bioavailability of siRNA. Methods: A Systematic Evolution of Ligands through Exponential Enrichment (SELEX) approach was used to obtain modified RNA-binding aptamers, which were then fused directly to siRNA via in vitro transcription. Molecular and pharmacokinetic properties of the aptamer-siRNA chimeras were subsequently measured in vitro and in vivo. Results: In vitro assays show that albumin-binding aptamers are stable in serum while maintaining potent gene knockdown capabilities in the chimera format. In vivo, the absolute circulation half-life of the best-performing aptamer-siRNA chimera (Clone 1) was 1.6-fold higher than a scrambled aptamer chimera control. Conclusions: Aptamer-siRNA chimeras exhibit improved bioavailability without compromising biological activity. Hence, this albumin-binding aptamer-siRNA chimera approach may be a promising strategy for drug delivery applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00718-y.

8.
iScience ; 25(8): 104813, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35982785

RESUMEN

Species differences in brain and blood-brain barrier (BBB) biology hamper the translation of findings from animal models to humans, impeding the development of therapeutics for brain diseases. Here, we present a human organotypic microphysiological system (MPS) that includes endothelial-like cells, pericytes, glia, and cortical neurons and maintains BBB permeability at in vivo relevant levels. This human Brain-Chip engineered to recapitulate critical aspects of the complex interactions that mediate neuroinflammation and demonstrates significant improvements in clinical mimicry compared to previously reported similar MPS. In comparison to Transwell culture, the transcriptomic profiling of the Brain-Chip displayed significantly advanced similarity to the human adult cortex and enrichment in key neurobiological pathways. Exposure to TNF-α recreated the anticipated inflammatory environment shown by glia activation, increased release of proinflammatory cytokines, and compromised barrier permeability. We report the development of a robust brain MPS for mechanistic understanding of cell-cell interactions and BBB function during neuroinflammation.

9.
Nat Commun ; 13(1): 6581, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323693

RESUMEN

Astrocytes are critical components of the neurovascular unit that support blood-brain barrier (BBB) function. Pathological transformation of astrocytes to reactive states can be protective or harmful to BBB function. Here, using a human induced pluripotent stem cell (iPSC)-derived BBB co-culture model, we show that tumor necrosis factor (TNF) transitions astrocytes to an inflammatory reactive state that causes BBB dysfunction through activation of STAT3 and increased expression of SERPINA3, which encodes alpha 1-antichymotrypsin (α1ACT). To contextualize these findings, we correlated astrocytic STAT3 activation to vascular inflammation in postmortem human tissue. Further, in murine brain organotypic cultures, astrocyte-specific silencing of Serpina3n reduced vascular inflammation after TNF challenge. Last, treatment with recombinant Serpina3n in both ex vivo explant cultures and in vivo was sufficient to induce BBB dysfunction-related molecular changes. Overall, our results define the TNF-STAT3-α1ACT signaling axis as a driver of an inflammatory reactive astrocyte signature that contributes to BBB dysfunction.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Astrocitos/metabolismo , alfa 1-Antiquimotripsina/metabolismo , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/patología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción STAT3/metabolismo
10.
Curr Opin Chem Eng ; 30: 86-95, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32953427

RESUMEN

Drug delivery to the central nervous system (CNS) is generally hindered by the selectivity of the blood-brain barrier (BBB). However, there is strong evidence that the integrity of the BBB is compromised under certain pathological conditions, potentially providing a window to deliver drugs to injured brain regions. Recent studies suggest that caveolae-mediated transcytosis, a transport pathway suppressed in the healthy BBB, becomes elevated as an immediate response to ischemic stroke and at early stages of aging, where it may precede irreversible neurological damage. This article reviews early-stage caveolar transcytosis as a novel and promising drug delivery opportunity. We propose that albumin-binding and nanoparticle approaches have the potential to leverage this window of transcellular BBB disruption for trafficking therapeutic agents into the CNS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA