Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33920046

RESUMEN

SmartBone® (SB) is a biohybrid bone substitute advantageously proposed as a class III medical device for bone regeneration in reconstructive surgeries (oral, maxillofacial, orthopedic, and oncology). In the present study, a new strategy to improve SB osteoinductivity was developed. SB scaffolds were loaded with lyosecretome, a freeze-dried formulation of mesenchymal stem cell (MSC)-secretome, containing proteins and extracellular vesicles (EVs). Lyosecretome-loaded SB scaffolds (SBlyo) were prepared using an absorption method. A burst release of proteins and EVs (38% and 50% after 30 min, respectively) was observed, and then proteins were released more slowly with respect to EVs, most likely because they more strongly adsorbed onto the SB surface. In vitro tests were conducted using adipose tissue-derived stromal vascular fraction (SVF) plated on SB or SBlyo. After 14 days, significant cell proliferation improvement was observed on SBlyo with respect to SB, where cells filled the cavities between the native trabeculae. On SB, on the other hand, the process was still present, but tissue formation was less organized at 60 days. On both scaffolds, cells differentiated into osteoblasts and were able to mineralize after 60 days. Nonetheless, SBlyo showed a higher expression of osteoblast markers and a higher quantity of newly formed trabeculae than SB alone. The quantification analysis of the newly formed mineralized tissue and the immunohistochemical studies demonstrated that SBlyo induces bone formation more effectively. This osteoinductive effect is likely due to the osteogenic factors present in the lyosecretome, such as fibronectin, alpha-2-macroglobulin, apolipoprotein A, and TGF-ß.


Asunto(s)
Matriz Ósea/química , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/farmacología , Trasplante de Células Madre Mesenquimatosas , Animales , Sustitutos de Huesos/química , Bovinos , Diferenciación Celular/efectos de los fármacos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Humanos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Procedimientos de Cirugía Plástica/métodos
2.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445150

RESUMEN

Titanium is one of the most frequently used materials in bone regeneration due to its good biocompatibility, excellent mechanical properties, and great osteogenic performance. However, osseointegration with host tissue is often not definite, which may cause implant failure at times. The present study investigates the capacity of the mesenchymal stem cell (MSC)-secretome, formulated as a ready-to-use and freeze-dried medicinal product (the Lyosecretome), to promote the osteoinductive and osteoconductive properties of titanium cages. In vitro tests were conducted using adipose tissue-derived MSCs seeded on titanium cages with or without Lyosecretome. After 14 days, in the presence of Lyosecretome, significant cell proliferation improvement was observed. Scanning electron microscopy revealed the cytocompatibility of titanium cages: the seeded MSCs showed a spread morphology and an initial formation of filopodia. After 7 days, in the presence of Lyosecretome, more frequent and complex cellular processes forming bridges across the porous surface of the scaffold were revealed. Also, after 14 and 28 days of culturing in osteogenic medium, the amount of mineralized matrix detected by alizarin red was significantly higher when Lyosecretome was used. Finally, improved osteogenesis with Lyosecretome was confirmed by confocal analysis after 28 and 56 days of treatment, and demonstrating the production by osteoblast-differentiated MSCs of osteocalcin, a specific bone matrix protein.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos/química , Células Madre Mesenquimatosas/citología , Titanio/química , Proliferación Celular , Células Cultivadas , Liofilización , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Andamios del Tejido/química
3.
Biomedicines ; 10(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35625800

RESUMEN

Recently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of the active principle release. This study represents the feasibility study for the sterile production of coprinted scaffolds and the proof of concept for their in vitro biological efficacy. Sterile scaffolds were obtained, and Lyosecretome enhanced their colonization by MSCs, sustaining differentiation towards the bone line in an osteogenic medium. Indeed, after 14 days, the amount of mineralized matrix detected by alizarin red was significantly higher for the Lyosecretome scaffolds. The amount of osteocalcin, a specific bone matrix protein, was significantly higher at all the times considered (14 and 28 days) for the Lyosecretome scaffolds. Confocal microscopy further confirmed such results, demonstrating improved osteogenesis with the Lyosecretome scaffolds after 14 and 28 days. Overall, these results prove the role of MSC secretome, coprinted in PCL/alginate scaffolds, in inducing bone regeneration; sterile scaffolds containing MSC secretome are now available for in vivo pre-clinical tests of bone regeneration.

4.
Pharmaceutics ; 13(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918073

RESUMEN

Three-dimensional printing of poly(ε-caprolactone) (PCL) is a consolidated scaffold manufacturing technique for bone regenerative medicine. Simultaneously, the mesenchymal stem/stromal cell (MSC) secretome is osteoinductive, promoting scaffold colonization by cells, proliferation, and differentiation. The present paper combines 3D-printed PCL scaffolds with lyosecretome, a freeze-dried formulation of MSC secretome, containing proteins and extracellular vesicles (EVs). We designed a lyosecretome 3D-printed scaffold by two loading strategies: (i) MSC secretome adsorption on 3D-printed scaffold and (ii) coprinting of PCL with an alginate-based hydrogel containing MSC secretome (at two alginate concentrations, i.e., 6% or 10% w/v). A fast release of proteins and EVs (a burst of 75% after 30 min) was observed from scaffolds obtained by absorption loading, while coprinting of PCL and hydrogel, encapsulating lyosecretome, allowed a homogeneous loading of protein and EVs and a controlled slow release. For both loading modes, protein and EV release was governed by diffusion as revealed by the kinetic release study. The secretome's diffusion is influenced by alginate, its concentration, or its cross-linking modes with protamine due to the higher steric hindrance of the polymer chains. Moreover, it is possible to further slow down protein and EV release by changing the scaffold shape from parallelepiped to cylindrical. In conclusion, it is possible to control the release kinetics of proteins and EVs by changing the composition of the alginate hydrogel, the scaffold's shape, and hydrogel cross-linking. Such scaffold prototypes for bone regenerative medicine are now available for further testing of safety and efficacy.

5.
Pharmaceutics ; 13(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452088

RESUMEN

Producing mesenchymal stem cell (MSC)-secretome for dose escalation studies and clinical practice requires scalable and good manufacturing practice (GMP)-compliant production procedures and formulation into a standardized medicinal product. Starting from a method that combines ultrafiltration and freeze-drying to transform MSC-secretome into a pharmaceutical product, the lyosecretome, this work aims to: (i) optimize the lyosecretome formulation; (ii) investigate sources of variability that can affect the robustness of the manufacturing process; (iii) modify the ultrafiltration step to obtain a more standardized final product. Design of experiments and principal component analysis of the data were used to study the influence of batch production, lyophilization, mannitol (M)/sucrose (S) binary mixture, selected as cryoprotectant excipients, and the total amount of excipients on the extracellular vesicles (EV) particle size, the protein and lipid content and the in vitro anti-elastase. The different excipients ratios did not affect residual moisture or EV particle size; simultaneously, proteins and lipids were better preserved in the freeze-dried product using the maximum total concentration of excipients (1.5% w/v) with a M:S ratio of about 60% w/w. The anti-elastase activity was instead better preserved using 0.5% w/w of M as excipient. The secretome batch showed to be the primary source of variability; therefore, the manufacturing process has been modified and then validated: the final product is now concentrated to reach a specific protein (and lipid) concentration instead of cell equivalent concentration. The new standardization approach led to a final product with more reproducible quali-quantitative composition and higher biological activity.

6.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803385

RESUMEN

Arg-Gly-Asp (RGD)-based cyclopentapeptides (cRGDs) have a high affinity towards integrin αvß3 and αvß5, which are overexpressed by many tumor cells. Here, curcumin-loaded silk fibroin nanoparticles (SFNs) have been functionalized on the surface with cRGD to provide active targeting towards tumor cells; a "click reaction" between the RGD-based cyclopentapeptide carrying an azide group and triple-bond-functionalized nanoparticles has been exploited. Both naked and functionalized SFNs were less than 200 nm in diameter and showed a round-shaped morphology but, after functionalization, SFNs increased in size and protein molecular weight. The functionalization of SFNs' surfaces with cRGD provided active internalization by cells overexpressing integrin receptors. At the lowest concentration tested (0.01 mg/mL), functionalized SFNs showed more effective uptake with respect to the naked by tumor cells that overexpress integrin receptors (but not for non-overexpressing ones). In contrast, at higher concentrations, the non-specific cell membrane protein-particle interactions are promoted and coupled to specific and target mediated uptake. Visual observations by fluorescence microscopy suggested that SFNs bind to integrin receptors on the cell surface and are then internalized by endocytosis. Overall, SFN functionalization provided in vitro active targeting for site-specific delivery of anticancer drugs, boosting activity and sparing healthy organs.

7.
Eur J Pharm Biopharm ; 155: 37-48, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32784044

RESUMEN

Chronic wounds account for 3% of total healthcare expenditure of developed countries; thus, innovative therapies, including Mesenchymal Stem Cells (MSCs) end their exosomes are increasingly considered, even if the activity depends on the whole secretome, made of both soluble proteins and extracellular vesicles. In this work, we prove for the first time the in vivo activity of the whole secretome formulated in a sponge-like alginate wound dressing to obtain the controlled release of bioactive substances. The product has been prepared in a public GMP-compliant facility by a scalable process; based on the murine model, treated wounds healed faster than controls without complications or infections. The treatment induced a higher acute inflammatory process in a short time and sustained the proliferative phase by accelerating fibroblast migration, granulation tissue formation, neovascularization and collagen deposition. The efficacy was substantially supported by the agreement between histological and proteomic findings. In addition to functional modules related to proteolysis, complement and coagulation cascades, protein folding and ECM remodeling, in treated skin, emerged the role of specific wound healing related proteins, including Tenascin (Tnc), Decorin (Dcn) and Epidermal growth factor receptor (EGFR). Of note, Decorin and Tenascin were also components of secretome, and network analysis suggests a potential role in regulating EGFR. Although further experiments will be necessary to characterize better the molecular keys induced by treatment, overall, our results confirm the whole secretome efficacy as novel "cell-free therapy". Also, sponge-like topical dressing containing the whole secretome, GMP- compliant and "ready-off-the-shelf", may represent a relevant point to facilitate its translation into the clinic.


Asunto(s)
Alginatos/administración & dosificación , Vendajes , Modelos Animales de Enfermedad , Esponja de Gelatina Absorbible/administración & dosificación , Proteómica/métodos , Cicatrización de Heridas/efectos de los fármacos , Alginatos/farmacocinética , Animales , Esponja de Gelatina Absorbible/farmacocinética , Masculino , Ratones , Cicatrización de Heridas/fisiología
8.
Pharmaceutics ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326171

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are a therapeutic target to promote tissue regeneration, mainly when oxidative stress-mediated damage is involved in disease pathogenesis. Here, slow-release silk sericin nanoparticles (SNPs) loaded with natural antioxidant polyphenols were developed to sustain regeneration by tissue-resident MSCs. SNPs were prepared by exploiting a self-assembly method with poloxamer and were loaded with proanthocyanidins (P), quercetin (Q) or epigallocatechin gallate (E). SNPs, with a diameter less than 150 nm, were able to encapsulate both hydrophilic (P and E) and hydrophobic (Q) drugs. A slow and controlled release was obtained from SNPs for all the actives in PBS, while in EtOH, Q and E showed a burst release but P did not. Kinetic models revealed lower diffusion of P than other biomolecules, probably due to the higher steric hindrance of P. The in vitro anti-oxidant, anti-elastase and anti-tyrosinase properties of SNPs were assessed: loading the P and E into SNPs preserved the in vitro biological activities whereas for Q, the anti-elastase activity was strongly improved. Moreover, all formulations promoted MSC metabolic activity over 72 h. Finally, SNPs exhibited a strong ability to protect MSCs from oxidative stress, which supports their potential use for regenerative purposes mediated by tissue-resident MSCs.

9.
Nanomedicine (Lond) ; 14(6): 753-765, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30741596

RESUMEN

AIM: To validate the use of ultrafiltration (UF) as an alternative applicable industrial method to replace ultracentrifugation (UC) in the purification of mesenchymal stromal cell (MSC)-secretome. MATERIALS & METHODS: Pharmaceutical formulations containing secretome and/or extracellular vesicles were extracted from adipose-MSCs and bone marrow-MSCs by combining UF or UC with lyophilization. RESULTS & CONCLUSION: UF led to higher protein, lipid, cytokine and exosomes yields compared with UC. The isolation procedure and cell source influenced immunomodulatory activity, which was in vitro evaluated by inhibition of phytohemagglutinin-activated peripheral blood mononuclear cell proliferation, and by modulation of IL-10, IFN-γ and IL-6. A secretome dosage was identified to obtain the same immunomodulatory activity of MSCs, paving the way for cell-free therapy.


Asunto(s)
Exosomas/química , Inmunomodulación/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Liofilización/métodos , Humanos , Inmunofenotipificación , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/citología , Fosfolípidos/metabolismo
10.
Cells ; 7(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380806

RESUMEN

In this paper, a pilot production process for mesenchymal stem/stromal freeze-dried secretome was performed in a validated good manufacturing practice (GMP)-compliant cell factory. Secretome was purified from culture supernatants by ultrafiltration, added to cryoprotectant, lyophilized and characterized. We obtained a freeze-dried, "ready-off-the-shelf" and free soluble powder containing extracellular vesicles and proteins. In the freeze-dried product, a not-aggregated population of extracellular vesicles was detected by nanoparticle tracking analysis; Fourier transform infrared spectra showed the simultaneous presence of protein and lipids, while differential scanning calorimetry demonstrated that lyophilization process successfully occurred. A proteomic characterization allowed the identification of proteins involved in immune response, response to stress, cytoskeleton and metabolism. Moreover, the product was not cytotoxic up to concentrations of 25 mg/mL (on human fibroblasts, chondrocytes and nucleus pulposus cells by MTT assay) and was blood compatible up to 150 mg/mL. Finally, at concentrations between 5 and 50 mg/mL, freeze-dried secretome showed to in vitro counteract the oxidative stress damage induced by H2O2 on nucleus pulposus cells by MTT assay.

11.
Int J Pharm ; 520(1-2): 86-97, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28163224

RESUMEN

The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells.


Asunto(s)
Curcumina/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Seda/farmacocinética , Células Madre/citología , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Seda/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA