Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0305832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024311

RESUMEN

Understanding the mechanisms that underlie de novo mutations (DNMs) can be essential for interpreting human evolution, including aspects such as rapidly diverging genes, conservation of non-coding regulatory elements, and somatic DNA adaptation, among others. DNM accumulation in Homo sapiens is often limited to evaluation of human trios or quads across a single generation. Moreover, human SNPs in exons, pseudogenes, or other non-coding elements can be ancient and difficult to date, including polymorphisms attributable to founder effects and identity by descent. In this report, we describe multigenerational evolution of a human coding locus devoid of natural selection, and delineate patterns and principles by which DNMs have accumulated over the past few thousand years. We apply a data set comprising cystic fibrosis transmembrane conductance regulator (CFTR) alleles from 2,393 individuals homozygous for the F508del defect. Additional polymorphism on the F508del background diversified subsequent to a single mutational event during recent human history. Because F508del CFTR is without function, SNPs observed on this haplotype are effectively attributable to factors that govern accumulating de novo mutations. We show profound enhancement of transition, synonymous, and positionally repetitive polymorphisms, indicating appearance of DNMs in a manner evolutionarily designed to protect protein coding DNA against mutational attrition while promoting diversity.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Mutación , Polimorfismo de Nucleótido Simple , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Evolución Molecular , Haplotipos , Genómica/métodos , Genoma Humano , Fibrosis Quística/genética , Fibrosis Quística/metabolismo
2.
Nat Rev Clin Oncol ; 21(6): 407-427, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589512

RESUMEN

The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/terapia , Ácidos Nucleicos/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Terapia Genética/métodos , Nanopartículas/uso terapéutico , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos
3.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580646

RESUMEN

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Asunto(s)
Codón sin Sentido , ARN de Transferencia , Codón sin Sentido/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Codón/genética , Ribosomas/metabolismo , Terapia Genética , Biosíntesis de Proteínas/genética , Codón de Terminación
4.
PLoS One ; 19(5): e0303257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753830

RESUMEN

Patterns of single nucleotide polymorphisms (SNPs) in eukaryotic DNA are traditionally attributed to selective pressure, drift, identity descent, or related factors-without accounting for ways in which bias during de novo SNP formation, itself, might contribute. A functional and phenotypic analysis based on evolutionary resilience of DNA points to decreased numbers of non-synonymous SNPs in human and other genomes, with a predominant component of SNP depletion in the human gene pool caused by robust preferences during de novo SNP formation (rather than selective constraint). Ramifications of these findings are broad, belie a number of concepts regarding human evolution, and point to a novel interpretation of evolving DNA across diverse species.


Asunto(s)
Evolución Molecular , Polimorfismo de Nucleótido Simple , Humanos , Genoma Humano , Animales , Genoma/genética , Genómica/métodos
5.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260306

RESUMEN

While breakthroughs with organoids have emerged as next-generation in vitro tools, standardization for drug discovery remains a challenge. This work introduces human airway organoids with reversed biopolarity (AORBs), cultured and analyzed in a high-throughput, single-organoid-per-well format, enabling milestones towards standardization. AORBs exhibit a spatio-temporally stable apical-out morphology, facilitating high-yield direct intact-organoid virus infection. Single-cell RNA sequencing and immunohistochemistry confirm the physiologically relevant recapitulation of differentiated human airway epithelia. The cellular tropism of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains along with host response differences between Delta, Washington, and Omicron variants, as observed in transcriptomic profiles, also suggest clinical relevance. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds (remdesivir, bemnifosbuvir, and nirmatrelvir) demonstrates that AORBs efficiently predict human efficacy, comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). This combination of throughput and relevance allows AORBs to robustly detect false negative results in efficacy, preventing irretrievable loss of promising lead compounds. While this work leverages the SARS-CoV-2 study as a proof-of-concept application, the standardization capacity of AORB holds broader implications in line with regulatory efforts to push alternatives to animal studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA