Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 42(4): e112453, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594364

RESUMEN

Synaptic dysfunction caused by soluble ß-amyloid peptide (Aß) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aß suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aß elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aß-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Sinapsis/metabolismo
2.
J Neurochem ; 157(6): 2128-2144, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33583024

RESUMEN

Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aß) deposition. We established two-photon Ca2+ -imaging in vivo in the hippocampus of rats and found hyperactivity of CA1 neurons. Patch-clamp recordings in brain slices in vitro revealed increased neuronal input resistance and prolonged action potential width in CA1 pyramidal neurons. We did neither observe changes in synaptic inhibition, nor in excitation. Our data support the view that increased intrinsic excitability of CA1 neurons may precede inhibitory dysfunction at an early stage of Aß-deposition and disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Femenino , Hipocampo/patología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Transgénicas
3.
Cell Death Differ ; 27(12): 3354-3373, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32641776

RESUMEN

Dendritic spines are postsynaptic domains that shape structural and functional properties of neurons. Upon neuronal activity, Ca2+ transients trigger signaling cascades that determine the plastic remodeling of dendritic spines, which modulate learning and memory. Here, we study in mice the role of the intracellular Ca2+ channel Ryanodine Receptor 2 (RyR2) in synaptic plasticity and memory formation. We demonstrate that loss of RyR2 in pyramidal neurons of the hippocampus impairs maintenance and activity-evoked structural plasticity of dendritic spines during memory acquisition. Furthermore, post-developmental deletion of RyR2 causes loss of excitatory synapses, dendritic sparsification, overcompensatory excitability, network hyperactivity and disruption of spatially tuned place cells. Altogether, our data underpin RyR2 as a link between spine remodeling, circuitry dysfunction and memory acquisition, which closely resemble pathological mechanisms observed in neurodegenerative disorders.


Asunto(s)
Espinas Dendríticas/fisiología , Hipocampo/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sinapsis/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo
4.
Nat Neurosci ; 20(1): 16-19, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27893726

RESUMEN

The medial septum and diagonal band of Broca (MSDB) send glutamatergic axons to medial entorhinal cortex (MEC). We found that this pathway provides speed-correlated input to several MEC cell-types in layer 2/3. The speed signal is integrated most effectively by pyramidal cells but also excites stellate cells and interneurons. Thus, the MSDB conveys speed information that can be used by MEC neurons for spatial representation of self-location.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Locomoción/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Axones/fisiología , Interneuronas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/fisiología , Células Piramidales/metabolismo
6.
Neuron ; 86(5): 1253-64, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25982367

RESUMEN

Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is linked to hippocampal oscillations and neuronal firing rates is unresolved. Here we reveal a septo-hippocampal circuit mediated by glutamatergic (VGluT2(+)) neurons that is activated before locomotion onset and that controls the initiation and velocity of locomotion as well as the entrainment of theta oscillations. Moreover, via septo-hippocampal projections onto alveus/oriens interneurons, this circuit regulates feedforward inhibition of Schaffer collateral and perforant path input to CA1 pyramidal neurons in a locomotion-dependent manner. With higher locomotion speed, the increased activity of medial septal VGluT2 neurons is translated into increased axo-somatic depolarization and higher firing rates of CA1 pyramidal neurons. VIDEO ABSTRACT.


Asunto(s)
Hipocampo/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Tabique del Cerebro/fisiología , Ritmo Teta/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA