RESUMEN
Infectious bursal disease virus (IBDV), the best characterized member of the Birnaviridae family, is a highly relevant avian pathogen causing both acute and persistent infections in different avian hosts. Here, we describe the establishment of clonal, long-term, productive persistent IBDV infections in DF-1 chicken embryonic fibroblasts. Although virus yields in persistently-infected cells are exceedingly lower than those detected in acutely infected cells, the replication fitness of viruses isolated from persistently-infected cells is higher than that of the parental virus. Persistently-infected DF-1 and IBDV-cured cell lines derived from them do not respond to type I interferon (IFN). High-throughput genome sequencing revealed that this defect is due to mutations affecting the IFNα/ß receptor subunit 2 (IFNAR2) gene resulting in the expression of IFNAR2 polypeptides harbouring large C-terminal deletions that abolish the signalling capacity of IFNα/ß receptor complex. Ectopic expression of a recombinant chicken IFNAR2 gene efficiently rescues IFNα responsiveness. IBDV-cured cell lines derived from persistently infected cells exhibit a drastically enhanced susceptibility to establishing new persistent IBDV infections. Additionally, experiments carried out with human HeLa cells lacking the IFNAR2 gene fully recapitulate results obtained with DF-1 cells, exhibiting a highly enhanced capacity to both survive the acute IBDV infection phase and to support the establishment of persistent IBDV infections. Results presented here show that the inactivation of the JAK-STAT signalling pathway significantly reduces the apoptotic response induced by the infection, hence facilitating the establishment and maintenance of IBDV persistent infections.IMPORTANCE Members of the Birnaviridae family, including infectious bursal disease virus (IBDV), exhibit a dual behaviour, causing acute infections that are often followed by the establishment of life-long persistent asymptomatic infections. Indeed, persistently infected specimens might act as efficient virus reservoirs, hence potentially contributing to virus dissemination. Despite the key importance of this biological trait, information about mechanisms triggering IBDV persistency is negligible. Our report evidences the capacity of IBDV, a highly relevant avian pathogen, to establishing long-term, productive, persistent infections in both avian and human cell lines. Data presented here provide novel and direct evidence about the crucial role of type I IFNs on the fate of IBDV-infected cells and their contribution to controlling the establishment of IBDV persistent infections. The use of cell lines unable to respond to type I IFNs opens a promising venue to unveiling additional factors contributing to IBDV persistency.
RESUMEN
It is well established that the endothelium plays a prominent role in the pathogenesis of various infectious diseases in mammals. However, little is known about the role of endothelial cells (EC) as targets for avian pathogens and their contribution to the pathogenesis of infectious diseases in galliform birds. First, we explored the innate immune response of primary chicken aortic endothelial cells (pchAEC), obtained from 18-day-old embryos, to stimulation with pathogen-associated molecular patterns or recombinant chicken interferons (type I, II and III IFNs). In spite of the abundant expression of a number of innate immune receptors, marked cytokine responses to stimulation with pathogen-associated molecular patterns were only seen in pchAEC treated with the TLR3 agonist polyI:C (pI:C) and the MDA5 agonist liposome-complexed polyI:C (L-pI:C), as was assessed by quantitative PCR and luciferase-based IFN-I/NFκB reporter assays. Treatments of pchAEC with IFN-α, IFN-γ and IFN-λ resulted in STAT1-phosphorylation/activation, as was revealed by immunoblotting. Next, we demonstrated that pchAEC are susceptible to infection with a variety of poultry pathogens, including Marek's disease virus (MDV), infectious bursal disease virus (IBDV), avian pathogenic Escherichia coli (APEC) and Eimeria tenella. Our data highlight that chicken EC are potential targets for viral, bacterial and protozoan pathogens in gallinaceous poultry and may partake in the inflammatory and antimicrobial response. The pchAEC infection model used herein will allow further studies interrogating avian pathogen interactions with vascular EC. RESEARCH HIGHLIGHTS Use of a well-defined primary chicken aortic endothelial cell (pchAEC) culture model for studying avian host-pathogen interactions. pchAEC are responsive to innate immune stimulation with viral pathogen-associated molecular patterns and chicken type I, II and III interferons. pchAEC are susceptible to infections with economically important poultry pathogens, including MDV, IBDV, APEC and Eimeria tenella.
Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Interferones/metabolismo , Enfermedades de las Aves de Corral/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Embrión de Pollo , Pollos , Células Endoteliales/inmunología , Endotelio/inmunología , Femenino , Inflamación/microbiología , Inflamación/parasitología , Inflamación/veterinaria , Interferones/genética , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/parasitologíaRESUMEN
Infectious bursal disease virus (IBDV, family Birnaviridae) is a bi-segmented double-stranded RNA virus for which two serotypes are described. Serotype 1 replicates in the bursa of Fabricius and causes an immunosuppressive and potentially fatal disease in young chickens. Serotype 2 is apathogenic in poultry species. Up to now, only one natural event of interserotypic reassortment has been described after the introduction of very virulent IBDV (vvIBDV) in the USA in 2009, resulting in an IBDV strain with its segment A related to vvIBDV and its segment B related to US serotype 2 strain OH. Here, we present the first European isolate illustrative of interserotypic reassortment. The reassorting isolate, named 100056, exhibits a genomic segment A typical of current European vvIBDV but a segment B close to European serotype 2 viruses, supporting an origin distinct from US strains. When inoculated into SPF chickens, isolate 100056 induced mild clinical signs in the absence of mortality but caused a severe bursal atrophy, which strongly suggests an immunosuppressive potential. These results illustrate that interserotypic reassortment is another mechanism that can create IBDV strains with a modified acute pathogenicity. As a consequence, and for a more precise inference of the possible phenotype, care should be taken that the molecular identification of IBDV strains is targeted to both genome segments.
Asunto(s)
Infecciones por Birnaviridae/veterinaria , Pollos/virología , Genoma Viral/genética , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/inmunología , Animales , Infecciones por Birnaviridae/virología , Bolsa de Fabricio/virología , Evolución Molecular , Francia , Genómica , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Fenotipo , Filogenia , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Virus Reordenados/patogenicidad , Análisis de Secuencia de ARN , Serogrupo , Organismos Libres de Patógenos Específicos , VirulenciaRESUMEN
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
Asunto(s)
Pollos/virología , Patos/virología , Subtipo H7N1 del Virus de la Influenza A/genética , Subtipo H7N1 del Virus de la Influenza A/metabolismo , Gripe Aviar/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Embrión de Pollo , Pollos/inmunología , Patos/inmunología , Subtipo H7N1 del Virus de la Influenza A/inmunología , Gripe Aviar/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Eliminación de Secuencia/genética , Eliminación de Secuencia/inmunología , Proteínas no Estructurales Virales/inmunología , Replicación Viral/genética , Replicación Viral/inmunologíaRESUMEN
This study analysed the immune response in the intestinal tract of ducks infected with low-pathogenic avian influenza viruses compared with ducks treated orally with R848, a synthetic Toll-like receptor 7 (TLR7) agonist. Influenza virus infection induced a type I interferon (IFN)-dependent immune response characterized by the expression of Mx transcripts in the ileum at levels that were proportional to viral load. Mx transcripts were detected in differentiated enterocytes from influenza virus-infected ducks. By contrast, in R848-treated ducks, Mx transcripts were detected solely in intraepithelial round cells of haematopoietic origin. An increase was detected in the number of intraepithelial TLR7-positive cells and intraepithelial IFN-α-producing cells in influenza virus-infected ducks, albeit to a lower level than in R848-treated ducks. IFN-γ expression was also upregulated in the intestine of influenza virus-infected and R848-treated ducks. Finally, interleukin (IL)-1ß and IL-8 transcripts were expressed at high levels in R848-treated ducks but were not increased in influenza virus-infected ducks. These findings suggest that a type I IFN-mediated immune response in enterocytes and the activation of IFN-γ-secreting cells contribute to the control of influenza virus replication in the duck intestine.
Asunto(s)
Íleon/inmunología , Imidazoles/administración & dosificación , Subtipo H7N1 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/inmunología , Animales , Patos , Enterocitos/inmunología , Imidazoles/inmunología , Inmunohistoquímica , Interferón-alfa/biosíntesis , Interferón-alfa/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-1beta/biosíntesis , Interleucina-1beta/inmunología , Interleucina-8/biosíntesis , Interleucina-8/inmunología , MicroscopíaRESUMEN
Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the phenotypes of these viruses in vitro in human, mouse, and duck cells as well as in vivo in mice and ducks. In human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to an increase in virus replication and to a more severe lung inflammation associated with a higher level of production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.
Asunto(s)
Virus de la Influenza A/patogenicidad , Proteínas no Estructurales Virales/fisiología , Factores de Virulencia/fisiología , Aminoácidos/genética , Animales , Línea Celular , Patos , Ingeniería Genética , Humanos , Virus de la Influenza A/genética , Gripe Aviar/patología , Gripe Aviar/virología , Pulmón/patología , Pulmón/virología , Ratones , Proteínas Mutantes/fisiología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Estructura Terciaria de Proteína , Recombinación Genética , Proteínas no Estructurales Virales/genética , Virulencia , Factores de Virulencia/genética , Replicación ViralRESUMEN
In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.
Asunto(s)
Nucléolo Celular/química , Virus de la Influenza A/fisiología , Proteínas no Estructurales Virales/análisis , Animales , Línea Celular , Células Cultivadas , Embrión de Pollo , Pollos , Patos , Células Epiteliales/virología , Fibroblastos/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Ratones , Ratones Endogámicos BALB C , Señales de Clasificación de Proteína , Transporte de ProteínasRESUMEN
Infectious bursal disease virus (IBDV), the agent of an immunosuppressive and sometimes lethal disease in chickens, is causing recurrent outbreaks in broiler chickens in Egypt. In particular, an antigenically modified isolate of very virulent IBDV (vvIBDV) called 99323 was detected in Egypt nearly twenty years ago; this isolate was shown to be experimentally controlled by an antigenically classical live vaccine. However, acute IBD is still reported, even in vaccinated flocks, and little is known about the genetic and antigenic properties of viruses currently circulating in Egypt. In the present study, ten samples collected in Egyptian broiler farms in 2015 as well as five samples collected in 2001 were analyzed. Genetic analyses of partial VP2 sequences revealed that 8 isolates clustered with vvIBDV strains, and 5 with tissue culture adapted and vaccine strains. Similar results were observed for partial VP1 sequences with the exception of isolate 160019, for which VP2 clustered with the vaccine strain Bursine while VP1 clustered with vvIBDV, suggesting reassortment. For isolates genetically related to vvIBDV, antigenic profiling revealed two patterns: while some isolates exhibited typical European vvIBDV reactivity with lack of binding of mAbs 5, other revealed extensive antigenic modifications, with lack of binding of mAbs 3, 5, 6, 8 and 9, similar to isolate 99323. These different patterns were associated with a single amino acid mutation at position 321 of VP2 that is located within peak PHI. Full genome sequencing was performed for three isolates, among which two were representative of the two antigenic patterns observed for vvIBDV as well as the reassortant isolate 160019. This study highlights the co-circulation of both antigenically typical and modified vvIBDV during the last fifteen years in Egypt.