Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Glia ; 67(8): 1478-1495, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980466

RESUMEN

Generation of glial cell diversity in the developing spinal cord is known to depend on spatio-temporal patterning programs. In particular, expression of the transcription factor Olig2 in neural progenitors of the pMN domain is recognized as critical to their fate choice decision to form oligodendrocyte precursor cells (OPCs) instead of astrocyte precursors (APs). However, generating some confusion, lineage-tracing studies of Olig2 progenitors in the spinal cord provided evidence that these progenitors also generate some astrocytes. Here, we addressed the role of the heparan sulfate-editing enzyme Sulf2 in the control of gliogenesis and found an unanticipated function for this enzyme. At initiation of gliogenesis in mouse, Sulf2 is expressed in ventral neural progenitors of the embryonic spinal cord, including in Olig2-expressing cells of the pMN domain. We found that sulf2 deletion, while not affecting OPC production, impairs generation of a previously unknown Olig2-expressing pMN-derived cell subtype that, in contrast to OPCs, does not upregulate Sox10, PDGFRα or Olig1. Instead, these cells activate expression of AP identity genes, including aldh1L1 and fgfr3 and, of note, retain Olig2 expression as they populate the spinal parenchyma at embryonic stages but also as they differentiate into mature astrocytes at postnatal stages. Thus, our study, by revealing the existence of Olig2-expressing APs that segregate early from pMN cells under the influence of Sulf2, supports the existence of a common source of APs and OPCs in the ventral spinal cord and highlights divergent regulatory mechanism for the development of pMN-derived OPCs and APs.


Asunto(s)
Astrocitos/enzimología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Médula Espinal/enzimología , Sulfatasas/metabolismo , Animales , Astrocitos/citología , Sustancia Gris/citología , Sustancia Gris/enzimología , Sustancia Gris/crecimiento & desarrollo , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Neurogénesis/fisiología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción SOXE/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Sulfatasas/genética
2.
Development ; 141(6): 1392-403, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24595292

RESUMEN

In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.


Asunto(s)
Proteínas Hedgehog/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Sulfatasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Ratones , Células-Madre Neurales/clasificación , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Transducción de Señal , Médula Espinal/citología , Sulfatasas/genética , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
3.
J Neurosci ; 32(50): 18018-34, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238718

RESUMEN

In the developing ventral spinal cord, motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) are sequentially generated from a common pool of neural progenitors included in the so-called pMN domain characterized by Olig2 expression. Here, we establish that the secreted Sulfatase 1 (Sulf1) is a major component of the mechanism that causes these progenitors to stop producing MNs and change their fate to generate OPCs. We show that specification of OPCs is severely affected in sulf1-deficient mouse embryos. This defect does not rely on abnormal patterning of the spinal cord or failure in maintenance of pMN progenitors at the onset of OPC specification. Instead, the efficiency of OPC induction is reduced, only few Olig2 progenitors are recruited to generate OPCs, meanwhile they continue to produce MNs beyond the normal timing of the neuroglial switch. Using the chicken embryo, we show that Sulf1 activity is required precisely at the stage of the MN-to-OPC fate switch. Finally, we bring arguments supporting the view that Sulf1 controls the level of Sonic Hedgehog (Shh) signaling activity, behaving as an enhancer rather than an obligatory component in the Shh pathway. Our study provides additional insights into the temporal control of Olig2 progenitor cell fate change by the identification of Sulf1 as an extracellular timing signal in the ventral spinal cord.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Hedgehog/metabolismo , Neuronas Motoras/citología , Oligodendroglía/citología , Médula Espinal/embriología , Sulfotransferasas/metabolismo , Animales , Electroporación , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas Motoras/enzimología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/enzimología , Transducción de Señal/fisiología , Médula Espinal/metabolismo
4.
Dev Biol ; 358(1): 168-80, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21806980

RESUMEN

Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/metabolismo , Retroalimentación Fisiológica/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Sulfatasas/metabolismo , Sulfotransferasas/metabolismo , Alas de Animales/crecimiento & desarrollo , Animales , Drosophila , Receptores ErbB/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Inmunohistoquímica , Hibridación in Situ
5.
Dev Biol ; 344(2): 611-20, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20488175

RESUMEN

In the vertebrate central nervous system (CNS), astrocytes are the most abundant and functionally diverse glial cell population. However, the mechanisms underlying their specification and differentiation are still poorly understood. In this study, we have defined spatially and temporally the origin of astrocytes and studied the role of BMPs in astrocyte development in the embryonic chick spinal cord. Using explant cultures, we show that astrocyte precursors started migrating out of the neuroepithelium in the mantle layer from E5, and that the dorsal-most level of the neuroepithelium, from the roof plate to the dl3 level, did not generate GFAP-positive astrocytes. Using a variety of early astrocyte markers together with functional analyses, we show that dorsal-most progenitors displayed a potential for astrocyte production but that dorsally-derived BMP signalling, possibly mediated through BMP receptor 1B, promoted neuronal specification instead. BMP treatment completely prevented astrocyte development from intermediate spinal cord explants at E5, whereas it promoted it at E6. Such an abrupt change in the response of this tissue to BMP signalling could be correlated to the onset of new foci of BMP activity and enhanced expression of BMP receptor 1A, suggesting that BMP signalling could promote astrocyte development in this region.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Astrocitos/metabolismo , Diferenciación Celular , Embrión de Pollo , Embrión no Mamífero , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología
6.
iScience ; 24(7): 102806, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34296073

RESUMEN

Astrocytes are recognized to be a heterogeneous population of cells that differ morphologically, functionally, and molecularly. Whether this heterogeneity results from generation of distinct astrocyte cell lineages, each functionally specialized to perform specific tasks, remains an open question. In this study, we used RNA sequencing analysis to determine the global transcriptome profile of the Olig2-expressing astrocyte subtype (Olig2-AS), a specific spinal astrocyte subtype that segregates early during development from Olig2 progenitors and differs from other spinal astrocytes by the expression of Olig2. We identified 245 differentially expressed genes. Among them, 135 exhibit higher levels of expression when compared with other populations of spinal astrocytes, indicating that these genes can serve as a "unique" functional signature of Olig2-AS. Among them, we identify two genes, inka2 and kcnip3, as specific molecular markers of the Olig2-AS in the P7 spinal cord. Our work thus reveals that Olig2 progenitors produce a unique spinal astrocyte subtype.

7.
Sci Rep ; 11(1): 118, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420239

RESUMEN

Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specification of ventral progenitors. More specifically, Sulf2a prevents Olig2 progenitors to activate high-threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specification in Shh target cells, provides direct evidence of non-redundant functions of Sulfs in the developing spinal cord.


Asunto(s)
Proteínas Hedgehog/metabolismo , Médula Espinal/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Heparitina Sulfato/metabolismo , Interneuronas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
8.
Elife ; 102021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34607629

RESUMEN

Although cell-to-cell heterogeneity in gene and protein expression within cell populations has been widely documented, we know little about its biological functions. By studying progenitors of the posterior region of bird embryos, we found that expression levels of transcription factors Sox2 and Bra, respectively involved in neural tube (NT) and mesoderm specification, display a high degree of cell-to-cell heterogeneity. By combining forced expression and downregulation approaches with time-lapse imaging, we demonstrate that Sox2-to-Bra ratio guides progenitor's motility and their ability to stay in or exit the progenitor zone to integrate neural or mesodermal tissues. Indeed, high Bra levels confer high motility that pushes cells to join the paraxial mesoderm, while high levels of Sox2 tend to inhibit cell movement forcing cells to integrate the NT. Mathematical modeling captures the importance of cell motility regulation in this process and further suggests that randomness in Sox2/Bra cell-to-cell distribution favors cell rearrangements and tissue shape conservation.


Asunto(s)
Diferenciación Celular/genética , Embrión no Mamífero/fisiología , Proteínas Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Factores de Transcripción SOXB1/genética , Proteínas de Dominio T Box/genética , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Codorniz
9.
Curr Biol ; 31(20): 4584-4595.e4, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34478646

RESUMEN

In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.


Asunto(s)
Neuronas Motoras , Médula Espinal , Potenciales de Acción/fisiología , Animales , Canales de Calcio , Uniones Comunicantes , Ratones , Neuronas Motoras/fisiología , Médula Espinal/fisiología
10.
Dev Dyn ; 238(9): 2418-29, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19653319

RESUMEN

Sulfatase 1 is a secreted enzyme that modulates the sulfation state of heparan sulfate proteoglycans (HSPGs), which are potential key regulators of diverse developmental signals during embryonic patterning. In the present work, we have analyzed the Sulf1 gene expression pattern during chicken forebrain development. Our results indicate that, at early developmental stages, chicken Sulf1 is expressed in the alar and basal plate of the secondary prosencephalon (telencephalon and hypothalamus, respectively) as well as in the diencephalic basal and floor plates. Later in development, Sulf1 is expressed by a subset of nuclei derived from these regions.


Asunto(s)
Prosencéfalo/embriología , Prosencéfalo/metabolismo , Sulfotransferasas/fisiología , Animales , Embrión de Pollo , Diencéfalo/embriología , Diencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Sulfotransferasas/genética , Telencéfalo/embriología , Telencéfalo/metabolismo
11.
Neural Dev ; 13(1): 3, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29519242

RESUMEN

BACKGROUND: Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs). RESULTS: Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord. CONCLUSION: Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología , Animales , Embrión de Pollo , Electroporación , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Técnicas In Vitro , Proteínas del Tejido Nervioso , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Técnicas de Cultivo de Órganos , Médula Espinal/embriología , Células Madre/fisiología
12.
J Neurosci ; 26(19): 5037-48, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16687495

RESUMEN

In the embryonic chick ventral spinal cord, the initial emergence of oligodendrocytes is a relatively late event that depends on prolonged Sonic hedgehog (Shh) signaling. In this report, we show that specification of oligodendrocyte precursors (OLPs) from ventral Nkx2.2-expressing neural progenitors occurs precisely when these progenitors stop generating neurons, indicating that the mechanism of the neuronal/oligodendroglial switch is a common feature of ventral OLP specification. We further show that an experimental early increase in the concentration of Shh is sufficient to induce premature specification of OLPs at the expense of neuronal genesis indicating that the relative doses of Shh received by ventral progenitors determine whether they become neurons or glia. Accordingly, we observe that the Shh protein accumulates at the apical surface of Nkx2.2-expressing cells just before OLP specification, providing direct evidence that these cells are subjected to a higher concentration of the morphogen when they switch to an oligodendroglial fate. Finally, we show that this abrupt change in Shh distribution is most likely attributable to the timely activity of Sulfatase 1 (Sulf1), a secreted enzym that modulates the sulfation state of heparan sulfate proteoglycans. Sulf1 is expressed in the ventral neuroepithelium just before OLP specification, and we show that its experimental overexpression leads to apical concentration of Shh on neuroepithelial cells, a decisive event for the switch of ventral neural progenitors toward an oligodendroglial fate.


Asunto(s)
Oligodendroglía/citología , Oligodendroglía/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Sulfotransferasas/metabolismo , Transactivadores/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Proteínas Hedgehog , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares , Transducción de Señal/fisiología , Factores de Transcripción
13.
J Dev Biol ; 5(2)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29615562

RESUMEN

A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.

14.
Neural Dev ; 12(1): 10, 2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28595615

RESUMEN

BACKGROUND: In the vertebrate spinal cord, motor neurons (MN) are generated in stereotypical numbers from a pool of dedicated progenitors (pMN) whose number depends on signals that control their specification but also their proliferation and differentiation rates. Although the initial steps of pMN specification have been extensively studied, how pMN numbers are regulated over time is less well characterized. RESULTS: Here, we show that ephrinB2 and ephrinB3 are differentially expressed in progenitor domains in the ventral spinal cord with several Eph receptors more broadly expressed. Genetic loss-of-function analyses show that ephrinB2 and ephrinB3 inversely control pMN numbers and that these changes in progenitor numbers correlate with changes in motor neuron numbers. Detailed phenotypic analyses by immunostaining and genetic interaction studies between ephrinB2 and Shh indicate that changes in pMN numbers in ephrin mutants are due to alteration in progenitor identity at late stages of development. CONCLUSIONS: Altogether our data reveal that Eph:ephrin signaling is required to control progenitor identities in the ventral spinal cord.


Asunto(s)
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Receptores de la Familia Eph/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Recuento de Células , Proteínas Hedgehog/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
15.
Gene Expr Patterns ; 4(5): 537-42, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15261831

RESUMEN

The COE (Collier/Olf/EBF) family of transcription factors comprises a single member in Drosophila and four members in human and mice. We have examined by in situ hybridization the expression patterns of each ebf/coe gene during limb development in mouse and chicken embryos. Expression of mouse ebf1, 2 and 3 is detected in mesenchymal cells from stages E10.5-11, expression of ebf2 being restricted to the presumptive zeugopod. Cross sections of mouse and chicken limb buds at several stages reveal that ebfs are specifically expressed in the connective tissues surrounding chondrogenic condensations and forming tendons. They thus represent useful new markers for studying vertebrate limb development, particularly formation of ligaments.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Ratones/embriología , Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Embrión de Pollo , Tejido Conectivo/metabolismo , ADN Complementario/genética , Hibridación in Situ , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Factores de Transcripción/genética
16.
Dev Biol ; 303(2): 800-13, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17173889

RESUMEN

During development, neural cell fate in the vertebrate optic nerve is restricted to the astroglial lineage. However, when isolated from the embryo and explanted in vitro, optic nerve progenitors generate neurons instead of astrocytes, suggesting that neuronal potentialities exist and are repressed in progenitors in vivo. Here we have investigated the mechanisms controlling cell fate in the optic nerve. The optic nerve is characterized by expression of the homeodomain transcription factor Pax2 which is maintained in differentiated astrocytes. We have observed that Pax2 is rapidly down-regulated in explanted optic nerves that generate neurons, and that its overexpression by electroporation in the optic nerve, or ectopically in the neural tube, is sufficient to block neuronal differentiation and allow glial development, showing that Pax2 plays a major role in controlling cell fate in the optic nerve. In vitro and ex vivo experiments further show that a signaling cascade that involves successively Sonic hedgehog and FGF is required to maintain Pax2 expression in optic nerve precursors whereby inhibiting the neuronal fate and promoting astroglial differentiation.


Asunto(s)
Nervio Óptico/embriología , Nervio Óptico/metabolismo , Factor de Transcripción PAX2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular , Embrión de Pollo , Epistasis Genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Nervio Óptico/citología , Factor de Transcripción PAX2/genética , Pigmentación/efectos de los fármacos , Transducción de Señal
17.
Development ; 134(3): 625-34, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17215311

RESUMEN

Although glial cells missing (gcm) genes are known as glial determinants in the fly embryo, the role of vertebrate orthologs in the central nervous system is still under debate. Here we show for the first time that the chicken ortholog of fly gcm (herein referred to as c-Gcm1), is expressed in early neuronal lineages of the developing spinal cord and is required for neural progenitors to differentiate as neurons. Moreover, c-Gcm1 overexpression is sufficient to trigger cell cycle exit and neuronal differentiation in neural progenitors. Thus, c-Gcm1 expression constitutes a crucial step in the developmental cascade that prompts progenitors to generate neurons: c-Gcm1 acts downstream of proneural (neurogenin) and progenitor (Sox1-3) factors and upstream of NeuroM neuronal differentiation factor. Strikingly, this neurogenic role is not specific to the vertebrate gene, as fly gcm and gcm2 are also sufficient to induce the expression of neuronal markers. Interestingly, the neurogenic role is restricted to post-embryonic stages and we identify two novel brain neuronal lineages expressing and requiring gcm genes. Finally, we show that fly gcm and the chick and mouse orthologs induce expression of neural markers in HeLa cells. These data, which demonstrate a conserved neurogenic role for Gcm transcription factors, call for a re-evaluation of the mode of action of these genes during evolution.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Células HeLa , Humanos , Ratones , Proteínas del Tejido Nervioso/química , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química , Transfección
18.
Dev Biol ; 270(2): 308-21, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15183716

RESUMEN

In the developing spinal cord, oligodendrocyte progenitors (OLPs) originate from the ventral neuroepithelium and the specification of this lineage depends on the inductive activity of Sonic hedgehog (Shh) produced by ventral midline cells. On the other hand, it has been shown that OLP identity is acquired by the coexpression of the transcription factors olig2 and nkx2.2. Although initially expressed in adjacent nonoverlapping domains of the ventral neuroepithelium, these transcription factors become coexpressed in the pMN domain at the time of OLP specification through dorsal extension of the Nkx2.2 domain. Here we show that Shh is sufficient to promote the coexpression of Olig2 and Nkx2.2 in neuroepithelial cells. In addition, Shh activity is necessary for this coexpression since blocking Shh signalling totally abolishes Olig2 expression and impedes dorsal extension of Nkx2.2. Although Shh at these stages affects neuroepithelial cell proliferation, the dorsal extension of the Nkx2.2 domain is not due to progenitor proliferation but to repatterning of the ventral neuroepithelium. Finally, Shh not only stimulates OLP specification but also simultaneously restricts the ventral extension of the astrocyte progenitor (AP) domain and reduces astrocyte development. We propose that specification of distinct glial lineages is the result of a choice that depends on Shh signalling.


Asunto(s)
Astrocitos/fisiología , Regulación del Desarrollo de la Expresión Génica , Oligodendroglía/fisiología , Transducción de Señal , Médula Espinal/embriología , Transactivadores/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Bromodesoxiuridina , Embrión de Pollo , Cartilla de ADN , Proteínas Hedgehog , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
19.
Mol Cell Neurosci ; 25(4): 612-28, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15080891

RESUMEN

To address the question of the origin of glial cells and the mechanisms leading to their specification, we have sought to identify novel genes expressed in glial progenitors. We adopted suppression subtractive hybridization (SSH) to establish a chick cDNA library enriched for genes specifically expressed at 6 days of incubation (E6) in the ventral neuroepithelium, a tissue previously shown to contain glial progenitors. Screens were then undertaken to select differentially expressed cDNAs, and out of 82 unique SSH clones, 21 were confirmed to display a regionalized expression along the dorsoventral axis of the E6 ventral neuroepithelium. Among these, we identified a transcript coding for the chick orthologue of Sulf1, a recently identified cell surface sulfatase, as a new, early marker of oligodendrocyte (OL) precursors in the chick embryonic spinal cord. This study provides groundwork for the further identification of genes involved in glial specification.


Asunto(s)
Sistema Nervioso Central/embriología , Células Epiteliales/enzimología , Oligodendroglía/enzimología , Células Madre/enzimología , Sulfotransferasas/genética , Animales , Biomarcadores/análisis , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/enzimología , Embrión de Pollo , ADN Complementario/análisis , ADN Complementario/genética , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Biblioteca Genómica , Proteínas del Tejido Nervioso/genética , Hibridación de Ácido Nucleico/métodos , Oligodendroglía/citología , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA