Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gynecol Obstet Invest ; 89(4): 284-294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38373412

RESUMEN

BACKGROUND: d-Chiro-inositol is a natural molecule that, in association with its well-studied isomer myo-inositol, may play a role in treating various metabolic and gynecological disorders. OBJECTIVES: This perspective seeks to explore the mechanisms and functions of d-chiro-inositol, laying the foundations to discuss its use in clinical practice, across dysmetabolism, obesity, and hormonal dysregulation. METHODS: A narrative review of all the relevant papers known to the authors was conducted. OUTCOME: d-Chiro-inositol acts through a variety of mechanisms, acting as an insulin sensitizer, inhibiting the transcription of aromatase, in addition to modulating white adipose tissue/brown adipose tissue transdifferentiation. These different modes of action have potential applications in a variety of therapeutic fields, including PCOS, dysmetabolism, obesity, hypoestrogenic/hyperandrogenic disorders, and bone health. CONCLUSIONS: d-Chiro-inositol mode of action has been studied in detail in recent years, resulting in a clear differentiation between d-chiro-inositol and its isomer myo-inositol. The insulin-sensitizing activities of d-chiro-inositol are well understood; however, its potential applications in other fields, in particular obesity and hyperestrogenic/hypoandrogenic disorders in men and women, represent promising avenues of research that require further clinical study.


Asunto(s)
Inositol , Resistencia a la Insulina , Obesidad , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Humanos , Inositol/uso terapéutico , Resistencia a la Insulina/fisiología , Andrógenos/deficiencia , Aromatasa , Estrógenos/deficiencia
2.
Adv Physiol Educ ; 48(4): 677-684, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991037

RESUMEN

Artificial intelligence (AI) has gained massive interest with the public release of the conversational AI "ChatGPT," but it also has become a matter of concern for academia as it can easily be misused. We performed a quantitative evaluation of the performance of ChatGPT on a medical physiology university examination. Forty-one answers were obtained with ChatGPT and compared to the results of 24 students. The results of ChatGPT were significantly better than those of the students; the median (IQR) score was 75% (66-84%) for the AI compared to 56% (43-65%) for students (P < 0.001). The exam success rate was 100% for ChatGPT, whereas 29% (n = 7) of students failed. ChatGPT could promote plagiarism and intellectual laziness among students and could represent a new and easy way to cheat, especially when evaluations are performed online. Considering that these powerful AI tools are now freely available, scholars should take great care to construct assessments that really evaluate student reflection skills and prevent AI-assisted cheating.NEW & NOTEWORTHY The release of the conversational artificial intelligence (AI) ChatGPT has become a matter of concern for academia as it can easily be misused by students for cheating purposes. We performed a quantitative evaluation of the performance of ChatGPT on a medical physiology university examination and observed that ChatGPT outperforms medical students obtaining significantly better grades. Scholars should therefore take great care to construct assessments crafted to really evaluate the student reflection skills and prevent AI-assisted cheating.


Asunto(s)
Inteligencia Artificial , Evaluación Educacional , Estudiantes de Medicina , Humanos , Evaluación Educacional/métodos , Fisiología/educación , Universidades , Masculino , Femenino , Educación de Pregrado en Medicina/métodos
3.
Kidney Int ; 102(4): 728-739, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35870642

RESUMEN

Chronic kidney diseasehas been associated with changes in the function and composition of the gut microbiota. The ecosystem of the human gut consists of trillions of microorganisms forming an authentic metabolically active organ that is fueled by nutrients to produce bioactive compounds. These microbiota-derived metabolites may be protective for kidney function (e.g., short-chain fatty acids from fermentation of dietary fibers) or deleterious (e.g., gut-derived uremic toxins such as trimethylamine N-oxide, p-cresyl sulfate, and indoxyl sulfate from fermentation of amino acids). Although diet is the cornerstone of the management of the patient with chronic kidney disease, it remains a relatively underused component of the clinician's armamentarium. In this review, we describe the latest advances in understanding the diet-microbiota crosstalk in the uremic context and how this communication might contribute to chronic kidney disease progression and complications. We then discuss how this knowledge could be harnessed for personalized nutrition strategies to prevent patients with chronic kidney disease progressing tokidney failureand its detrimental consequences.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Aminoácidos , Dieta/efectos adversos , Fibras de la Dieta , Ingestión de Alimentos , Ecosistema , Ácidos Grasos Volátiles , Humanos , Indicán , Nutrientes , Sulfatos
4.
Nephrol Dial Transplant ; 37(10): 1951-1961, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35234930

RESUMEN

BACKGROUND: Chronic kidney disease is an important contributor to morbidity and mortality. 3-methylhistidine (3-MH) is the by-product of actin and myosin degradation reflecting skeletal muscle turnover. Markedly elevated 3-MH levels have been documented in uraemic patients, but the interpretation of high 3-MH concentration in maintenance haemodialysis (MHD) patients remains unclear. Indeed, it is not known whether elevated serum 3-MH levels are a marker of excessive muscle catabolism or a better lean tissue mass. Here, we evaluated the association between serum 3-MH levels and clinical outcomes in these patients. METHODS: Serum 3-MH concentration was measured by reverse-phase liquid chromatography/tandem mass spectrometry in a cohort of MHD patients. We analysed the relationships between various clinical/laboratory indices, lean tissue mass measured by bioimpedance spectroscopy, mortality and cardiovascular (CV) events. RESULTS: Serum 3-MH concentration was positively correlated with serum albumin, normalized protein catabolic rate (nPCR), simplified creatinine index (SCI) and lean tissue mass. Of 291 MHD patients, during a mean follow-up of 847 days, 91 patients died and 101 patients experienced a CV event. Survival was significantly better in patients with high 3-MH concentrations (P = .002). A higher level of 3-MH was also associated with a lower CV mortality and lower incidence of CV events (P = .015 and P < .001, respectively). Low serum 3-MH levels remained significantly associated with CV events but not with mortality after adjustment for demographic, metabolic and CV risk factors. CONCLUSION: Elevated serum 3-MH concentration appears to be a marker of better lean tissue mass and nutritional status. Low serum 3-MH is a robust and independent predictor of CV events in the MHD population.


Asunto(s)
Actinas , Fallo Renal Crónico , Metilhistidinas , Diálisis Renal , Actinas/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Creatinina , Humanos , Fallo Renal Crónico/sangre , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/terapia , Metilhistidinas/sangre , Metilhistidinas/metabolismo , Albúmina Sérica/análisis , Albúmina Sérica/metabolismo
5.
J Ren Nutr ; 32(2): 234-242, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33888408

RESUMEN

OBJECTIVE: Imbalance between anabolism and catabolism is linked to cachexia and protein-energy wasting (PEW), especially in frail populations such as patients with chronic kidney disease. PEW is responsible of poor outcomes with increased morbidity and mortality. Several causes are involved in PEW such as insulin resistance, acidosis, or hyperparathyroidism. Natriuretic peptides (NPs) have recently been described as activators of resting energy expenditure through the induction of browning of white adipose tissue in rodents with chronic kidney disease. The present study was therefore implemented to investigate whether NPs could be associated with PEW criteria and predict clinical outcomes. METHODS: We quantified serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) in a prospective cohort of 231 patients undergoing maintenance hemodialysis and atrial natriuretic peptide in a subgroup of 35 patients. Body composition parameters were measured with bioimpedance spectroscopy. RESULTS: NT-proBNP was inversely associated with serum albumin, prealbumin, and body mass index and, conversely, positively associated with age and C-reactive protein. NT-proBNP as well as atrial natriuretic peptide were significantly higher in patients with PEW criteria. NT-proBNP was negatively associated with body fat mass. In multiple linear regression, NT-proBNP remained associated with body mass index. Kaplan-Meier analysis revealed a significant correlation between serum NT-proBNP concentrations and all-cause mortality and cardiovascular events. This association remained significant after multivariable Cox regression models adjusted for demographic factors and cardiovascular risk factors. CONCLUSION: Accumulation of NPs seems to be associated with poor nutritional status and reduced survival among hemodialysis patients. Further studies are needed to confirm this association using resting energy expenditure measurement and adipose tissue biopsy.


Asunto(s)
Factor Natriurético Atrial , Insuficiencia Renal Crónica , Caquexia , Femenino , Humanos , Masculino , Péptidos Natriuréticos , Estudios Prospectivos , Diálisis Renal , Insuficiencia Renal Crónica/terapia
6.
J Am Soc Nephrol ; 31(7): 1462-1477, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518085

RESUMEN

BACKGROUND: CKD is associated with increased oxidative stress that correlates with occurrence of cardiovascular events. Modifications induced by increased oxidative stress particularly affect circulating lipoproteins such as HDL that exhibit antiatheromatous and antithrombotic properties in vitro. METHODS: To explore the specific role of oxidative modifications of HDL in CKD and their effect on the platelet-targeting antiaggregant properties of HDL, we used a CKD (5/6 nephrectomy) rabbit model. For ex vivo assessment of the antiaggregant properties of HDL, we collected blood samples from 15 healthy volunteers, 25 patients on hemodialysis, and 20 on peritoneal dialysis. We analyzed malondialdehyde, 4-hydroxynonenal (HNE), and 4-hydroxy-2-hexenal protein adduct levels. Platelet aggregation and activation were assessed by aggregometry, thromboxane B2 assay, or FACS. We modified HDL from controls by incubating it overnight at 37°C with 100 µM of HNE. RESULTS: HDL from CKD rabbits and patients on hemodialysis had HNE adducts. The percentage of platelet aggregation or activation induced by collagen was significantly higher when platelets were incubated with HDL from CKD rabbit and hemodialysis groups than with HDL from the control group. In both rabbits and humans, platelet aggregation and activation were significantly higher in the presence of HNE-modified HDL than with HDL from their respective controls. Incubation of platelets with a blocking antibody directed against CD36 or with a pharmacologic inhibitor of SRC kinases restored the antiaggregative phenotype in the presence of HDL from CKD rabbits, patients on hemodialysis and peritoneal dialysis, and HNE-modified HDL. CONCLUSIONS: HDL from CKD rabbits and patients on hemodialysis exhibited an impaired ability to inhibit platelet aggregation, suggesting that altered HDL properties may contribute to the increased cardiovascular risk in this population.


Asunto(s)
Aldehídos/sangre , Lipoproteínas HDL/sangre , Lipoproteínas HDL/farmacología , Estrés Oxidativo , Agregación Plaquetaria/efectos de los fármacos , Insuficiencia Renal Crónica/sangre , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos/farmacología , Plaquetas , Antígenos CD36/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Malondialdehído/sangre , Persona de Mediana Edad , Oxidación-Reducción , Diálisis Peritoneal , Fosforilación , Carbonilación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Insuficiencia Renal Crónica/terapia , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638926

RESUMEN

Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.


Asunto(s)
Diabetes Gestacional/tratamiento farmacológico , Inositol/farmacología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Testosterona/metabolismo , Células Tecales/efectos de los fármacos , Diabetes Gestacional/metabolismo , Femenino , Humanos , Inositol/química , Inositol/metabolismo , Estructura Molecular , Síndrome del Ovario Poliquístico/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Células Tecales/metabolismo
8.
Kidney Int ; 98(3): 663-672, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32739210

RESUMEN

Protein energy wasting is a common feature of patients with chronic kidney disease (CKD) and is associated with poor outcomes. Protein energy wasting and cachexia, a severe form of protein energy wasting, are characterized by increased resting energy expenditure but the underlying mechanisms are unclear. Browning corresponds to the activation of inducible brown adipocytes in white adipose tissue and occurs in states of cachexia associated with hypermetabolic disease such as cancer. Here we tested the hypothesis that CKD-associated protein energy wasting could result from browning activation as a direct effect of the uremic environment on adipocytes. In a murine model of CKD (5/6 nephrectomy), there was increased resting energy expenditure, expression of uncoupling protein 1 (a thermogenic protein uncoupling oxidative phosphorylation in mitochondria) and citrate synthase activity (a proxy of mitochondrial density in white adipose tissue). Mice with CKD also exhibited increased levels of atrial natriuretic peptide, a well known activator of browning. The incubation of primary adipose cells with plasma from patients receiving dialysis treatment and having signs of protein energy wasting led to an increased synthesis of uncoupling protein 1. Similarly, primary adipose cells exposed to atrial natriuretic peptide at concentrations relevant of CKD led to a significant increase of uncoupling protein 1 content. Thus, accumulation of cardiac natriuretic peptides during CKD could contribute to the browning of white adipose tissue and protein energy wasting.


Asunto(s)
Caquexia , Insuficiencia Renal Crónica , Tejido Adiposo Blanco/metabolismo , Animales , Caquexia/metabolismo , Metabolismo Energético , Humanos , Ratones , Péptidos Natriuréticos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteína Desacopladora 1/metabolismo
9.
Diabetologia ; 61(3): 688-699, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29299636

RESUMEN

AIMS/HYPOTHESIS: Oxidative stress is involved in the pathophysiology of insulin resistance and its progression towards type 2 diabetes. The peroxidation of n-3 polyunsaturated fatty acids produces 4-hydroxy-2-hexenal (4-HHE), a lipid aldehyde with potent electrophilic properties able to interfere with many pathophysiological processes. The aim of the present study was to investigate the role of 4-HHE in the development of insulin resistance. METHODS: 4-HHE concentration was measured in plasma from humans and rats by GC-MS. Insulin resistance was estimated in healthy rats after administration of 4-HHE using hyperinsulinaemic-euglycaemic clamps. In muscle cells, glucose uptake was measured using 2-deoxy-D-glucose and signalling pathways were investigated by western blotting. Intracellular glutathione was measured using a fluorimetric assay kit and boosted using 1,2-dithiole-3-thione (D3T). RESULTS: Circulating levels of 4-HHE in type 2 diabetic humans and a rat model of diabetes (obese Zucker diabetic fatty rats), were twice those in their non-diabetic counterparts (33 vs 14 nmol/l, p < 0.001), and positively correlated with blood glucose levels. During hyperinsulinaemic-euglycaemic clamps in rats, acute intravenous injection of 4-HHE significantly altered whole-body insulin sensitivity and decreased glucose infusion rate (24.2 vs 9.9 mg kg-1 min-1, p < 0.001). In vitro, 4-HHE impaired insulin-stimulated glucose uptake and signalling (protein kinase B/Akt and IRS1) in L6 muscle cells. Insulin-induced glucose uptake was reduced from 186 to 141.9 pmol mg-1 min-1 (p < 0.05). 4-HHE induced carbonylation of cell proteins and reduced glutathione concentration from 6.3 to 4.5 nmol/mg protein. Increasing intracellular glutathione pools using D3T prevented 4-HHE-induced carbonyl stress and insulin resistance. CONCLUSIONS/INTERPRETATION: 4-HHE is produced in type 2 diabetic humans and Zucker diabetic fatty rats and blunts insulin action in skeletal muscle. 4-HHE therefore plays a causal role in the pathophysiology of type 2 diabetes and might constitute a potential therapeutic target to taper oxidative stress-induced insulin resistance.


Asunto(s)
Aldehídos/farmacología , Resistencia a la Insulina/fisiología , Peroxidación de Lípido/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Adulto , Animales , Glucemia/efectos de los fármacos , Western Blotting , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos Omega-3/sangre , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Insulina/sangre , Insulina/farmacología , Masculino , Persona de Mediana Edad , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Zucker , Tionas/farmacología , Tiofenos/farmacología
10.
Kidney Int ; 94(5): 983-992, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30348306

RESUMEN

Wasting has been associated with increased cardiovascular and all-cause mortality in chronic kidney disease (CKD). We investigated whether serum zinc-alpha2-glycoprotein (ZAG), a potent cachectic and lipid-mobilizing factor that is increased in patients with CKD, predicts clinical outcomes in patients on chronic hemodialysis. We quantified serum ZAG at baseline in a prospective cohort of 252 patients undergoing maintenance hemodialysis. Serum ZAG concentrations were inversely associated with serum albumin, creatinine, and triglycerides and, conversely, positively associated with age. Although ZAG is strongly linked to protein energy wasting (PEW) in patients with cancer, higher ZAG concentrations were not associated with PEW in our cohort. During a mean study follow-up of 954 days, 49 patients died and 62 patients experienced a cardiovascular event. Kaplan-Meier analysis revealed a significant correlation between serum ZAG concentrations and all-cause mortality and cardiovascular events. In separate multivariable Cox regression models, serum ZAG concentrations remained significantly associated with all-cause mortality and cardiovascular events after adjustment for demographic factors (age, sex, and dialysis vintage), metabolic parameters (serum albumin, prealbumin, triglycerides, cholesterol, normalized protein catabolic rate, and body mass index), and cardiovascular risk factors (diabetes, dyslipidemia, history of cardiovascular disease, smoking, and diuretic use as a proxy of residual renal function). Thus, serum ZAG appears to be a strong and independent predictor of mortality and cardiovascular events in patients with end-stage renal disease. Further studies are necessary to confirm this association and to elucidate the underlying mechanisms.


Asunto(s)
Diálisis Renal/mortalidad , Insuficiencia Renal Crónica/sangre , Proteínas de Plasma Seminal/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Adulto Joven , Zn-alfa-2-Glicoproteína
11.
Curr Diab Rep ; 18(10): 97, 2018 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-30194541

RESUMEN

PURPOSE OF REVIEW: Chronic kidney disease (CKD) is characterized by the accumulation of uremic retention solutes (URS) and is associated with perturbations of glucose homeostasis even in absence of diabetes. The underlying mechanisms of insulin resistance, ß cell failure, and increase risk of diabetes in CKD, however, remain unclear. Metabolomic studies reported that some metabolites are similar in CKD and diabetic kidney disease (DKD) and contribute to the progression to end-stage renal disease. We attempted to discuss the mechanisms involved in the disruption of carbohydrate metabolism in CKD by focusing on the specific role of URS. RECENT FINDINGS: Recent clinical data have demonstrated a defect of insulin secretion in CKD. Several studies highlighted the direct role of some URS (urea, trimethylamine N-oxide (TMAO), p-cresyl sulfate, 3-carboxylic acid 4-methyl-5-propyl-2-furan propionic (CMPF)) in glucose homeostasis abnormalities and diabetes incidence. Gut dysbiosis has been identified as a potential contributor to diabetes and to the production of URS. The complex interplay between the gut microbiota, kidney, pancreas ß cell, and peripheral insulin target tissues has brought out new hypotheses for the pathogenesis of CKD and DKD. The characterization of intestinal microbiota and its associated metabolites are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials, and new treatments for CKD and DKD.


Asunto(s)
Diabetes Mellitus/metabolismo , Toxinas Biológicas/metabolismo , Uremia/metabolismo , Diabetes Mellitus/epidemiología , Microbioma Gastrointestinal , Humanos , Riñón/patología , Metabolómica
13.
J Nutr ; 147(4): 506-513, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28250190

RESUMEN

Background: Obesity is associated with hyperleptinemia and endothelial dysfunction. Hyperleptinemia has been reported to induce both oxidative stress and inflammation by increasing reactive oxygen species production.Objective: The objective of this study was to determine the effects of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] against leptin-induced oxidative stress and inflammation in human endothelial cells.Methods: Small interfering RNA (siRNA) were used to knock down the expression of vitamin D receptor (VDR) in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 4 h with physiologic (10-10 M) or supraphysiologic (10-7 M) concentrations of 1,25(OH)2D3 and exposed to leptin (10 ng/mL). Superoxide anion production and translocation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and nuclear transcription factor κB (NF-κB) subunit p65 to the nucleus and the activation of their target genes were quantified.Results: Pretreatment of HUVECs with 1,25(OH)2D3 prevented the leptin-induced increase in superoxide anion production (P < 0.05). Pretreatment with 1,25(OH)2D3 further increased NRF2 translocation to the nucleus (by 3-fold; P < 0.05) and increased mRNA expression of superoxide dismutase 2 (SOD2; by 2-fold), glutathione peroxidase (GPX; by 3-fold), NAD(P)H dehydrogenase (quinone) 1 (NQO1; by 4-fold), and heme oxygenase 1 (HMOX1; by 2-fold) (P < 0.05). Leptin doubled the translocation of NF-κB (P < 0.05) to the nucleus and increased (P < 0.05) the upregulation of vascular inflammatory mediators such as monocyte chemoattractant protein 1 (MCP1; by 1-fold), transforming growth factor ß (TGF ß by 1-fold), and vascular cell adhesion molecule 1 (VCAM1; by 4-fold) (P < 0.05), which were prevented (P < 0.05) by pretreatment with 1,25(OH)2D3 Protective effects of 1,25(OH)2D3 were confirmed to be VDR dependent by using VDR siRNA.Conclusion: Pretreatment with 1,25(OH)2D3 in the presence of a high concentration of leptin has a beneficial effect on HUVECs through the regulation of mediators of antioxidant activity and inflammation.


Asunto(s)
Calcitriol/farmacología , Células Endoteliales/metabolismo , Inflamación/inducido químicamente , Leptina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes , Calcitriol/administración & dosificación , Supervivencia Celular , Regulación de la Expresión Génica/fisiología , Humanos , Inflamación/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/fisiología , Transducción de Señal , Superóxidos/metabolismo
16.
Nephrol Dial Transplant ; 32(12): 2000-2009, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992089

RESUMEN

BACKGROUND: The role of uraemic toxins in insulin resistance associated with chronic kidney disease (CKD) is gaining interest. p-Cresol has been defined as the intestinally generated precursor of the prototype protein-bound uraemic toxins p-cresyl sulphate (p-CS) as the main metabolite and, at a markedly lower concentration in humans, p-cresyl glucuronide (p-CG). The objective of the present study was to evaluate the metabolism of p-cresol in mice and to decipher the potential role of both conjugates of p-cresol on glucose metabolism. METHODS: p-CS and p-CG were measured by high performance liquid chromatography-fluorescence in serum from control, 5/6 nephrectomized mice and mice injected intraperitoneously with either p-cresol or p-CG. The insulin sensitivity in vivo was estimated by insulin tolerance test. The insulin pathway in the presence of p-cresol, p-CG and/or p-CS was further evaluated in vitro on C2C12 muscle cells by measuring insulin-stimulated glucose uptake and the insulin signalling pathway (protein kinase B, PKB/Akt) by western blot. RESULTS: In contrast to in humans, where p-CS is the main metabolite of p-cresol, in CKD mice both conjugates accumulated, and after chronic p-cresol administration with equivalent concentrations but a substantial difference in protein binding (96% for p-CS and <6% for p-CG). p-CG exhibited no effect on insulin sensitivity in vivo or in vitro and no synergistic inhibiting effect in combination with p-CS. CONCLUSIONS: The relative proportion of the two p-cresol conjugates, i.e. p-CS and p-CG, is similar in mouse, in contrast to humans, pinpointing major inter-species differences in endogenous metabolism. Biologically, the sulpho- (i.e. p-CS) but not the glucuro- (i.e. p-CG) conjugate promotes insulin resistance in CKD.


Asunto(s)
Cresoles/farmacología , Glucurónidos/farmacología , Resistencia a la Insulina , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal/efectos de los fármacos , Ésteres del Ácido Sulfúrico/farmacología , Animales , Cresoles/sangre , Glucurónidos/sangre , Insulina/metabolismo , Ratones , Insuficiencia Renal Crónica/tratamiento farmacológico , Ésteres del Ácido Sulfúrico/sangre
17.
Nephrol Dial Transplant ; 37(1): 1-4, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34519782

Asunto(s)
Urea , Uremia , Humanos
18.
Horm Behav ; 75: 130-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26407661

RESUMEN

Physiological resonance - where the physiological state of a subject generates the same state in a perceiver - has been proposed as a proximate mechanism facilitating pro-social behaviours. While mainly described in mammals, state matching in physiology and behaviour could be a phylogenetically shared trait among social vertebrates. Birds show complex social lives and cognitive abilities, and their monogamous pair-bond is a highly coordinated partnership, therefore we hypothesised that birds express state matching between mates. We show that calls of male zebra finches Taeniopygia guttata produced during corticosterone treatment (after oral administration of exogenous corticosterone and during visual separation from the partner) provoke both an increase in corticosterone concentrations and behavioural changes in their female partner compared to control calls (regular calls emitted by the same male during visual separation from the partner only), whereas calls produced during corticosterone treatment by unfamiliar males have no such effect. Irrespective of the caller status (mate/non-mate), calls' acoustic properties were predictive of female corticosterone concentration after playback, but the identity of mate calls was necessary to fully explain female responses. Female responses were unlikely due to a failure of the call-based mate recognition system: in a discrimination task, females perceive calls produced during corticosterone treatment as being more similar to the control calls of the same male than to control calls of other males, even after taking acoustical differences into account. These results constitute the first evidence of physiological resonance solely on acoustic cues in birds, and support the presence of empathic processes.


Asunto(s)
Empatía/fisiología , Pinzones/fisiología , Apareamiento , Vocalización Animal/fisiología , Estimulación Acústica/veterinaria , Animales , Corticosterona/sangre , Señales (Psicología) , Femenino , Pinzones/sangre , Masculino
20.
Br J Nutr ; 113(12): 1862-75, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25990651

RESUMEN

We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Inositol/administración & dosificación , Inositol/metabolismo , Adipoquinas/sangre , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Suplementos Dietéticos , Ácido Graso Sintasas/metabolismo , Hiperglucemia/metabolismo , Inositol/análisis , Inositol/deficiencia , Inositol/orina , Resistencia a la Insulina , Riñón/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA