Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548336

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Niño , Adolescente , Cognición/fisiología , Desempeño Psicomotor/fisiología
2.
BMC Neurosci ; 24(1): 66, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093175

RESUMEN

BACKGROUND: The prevalence and pathophysiological mechanisms of cognitive deficits (CD) Systemic Lupus Erythematosus (SLE) and Rheumatoid arthritis (RA) are very heterogeneous and poorly understood. We characterized CD in patients with SLE compared with RA patients and healthy controls. We compared the neuropsychological profile of SLE and RA with patients' oxidative/inflammatory biomarkers for CD. METHODS: We performed a cross-sectional study, including 50 SLE patients, 29 RA patients, and 32 healthy controls. SLEDAI and DAS28 assessed disease activity. SF-36 questionnaire and a battery of cognitive tests were applied to all participants. Blood samples were collected to determine IL-6, S100ß, myeloperoxidase (MPO), malondialdehyde and reduced glutathione (GSH) alterations. RESULTS: In the SLE group, higher GSH was associated with the absence of CD (With CD = 69 ± 49, Without CD = 112 ± 81, p = 0.030), while higher IL-6 was associated with the presence of CD in the RA group (With CD = 603 ± 173, Without CD = 431 ± 162, p = 0.032). Regarding specific cognitive domains, in SLE higher MPO was associated with poor performance in reasoning and abstraction (p = 0.039), higher IL-6 was associated with poor performance in inhibitory control and attention (p = 0.031), and higher GSH was associated with better performance in memory(p = 0.021). Higher SLEDAI was associated with poor performance in semantic fluency(p = 0.031), inhibitory control, and attention in the SLE group(p = 0.037). In the RA group, higher DAS-28 was associated with poor performance in executive functions(p = 0.016) and phonemic fluency (p = 0.003). CONCLUSION: SLE patients' disease activity, inflammatory state, and oxidative stress were associated with CD. In RA patients, CD was associated with disease activity and inflammatory state. These results encourage further studies with larger samples aiming to confirm oxidative stress parameters as biomarkers of CD in SLE patients.


Asunto(s)
Artritis Reumatoide , Disfunción Cognitiva , Lupus Eritematoso Sistémico , Humanos , Estudios Transversales , Interleucina-6 , Artritis Reumatoide/complicaciones , Lupus Eritematoso Sistémico/complicaciones , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Biomarcadores , Estrés Oxidativo
3.
J Clin Rheumatol ; 29(3): 159-164, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729842

RESUMEN

BACKGROUND/OBJECTIVES: During the last years, a growing number of studies have investigated the link between cognitive dysfunction and rheumatoid arthritis (RA), highlighting the potential pathogenic role of several clinical, psychological, and biological factors. We aimed to investigate serological and cerebrospinal fluid biomarkers in humans and its association with cognitive dysfunction in patients with RA. METHODS: We performed a systematic review using PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis) protocol. A systematic search was conducted in the PubMed/MEDLINE, EMBASE, LILACS, Scopus, and Google Scholar databases from inception up to November 2021. The inclusion criteria for studies were defined based on the participants involved, type of exposure, type of comparison group, outcome of interest, and study design. RESULTS: Five original studies were included, which provided data from 428 participants. Among plasma proteins, SHH was increased and TTR was reduced in patients with mild cognitive impairment; anti-myelin basic protein and anti-myelin oligodendrocyte glycoprotein negatively correlated with memory, executive function, and attention. S100ß negatively correlated with memory and executive functions; some lymphocyte subpopulations positively correlated with attention, memory, and executive functions. Interleukin 2 [IL-2], IL-4, IL-6, and tumor necrosis factor α negatively correlated with memory and positively correlated with executive functions. Interleukin 1ß negatively correlated with global cognitive dysfunction and positively correlated with logical thinking. Interleukin 10 and brain-derived neurotrophic factor negatively correlated with memory. CONCLUSION: Despite the relative scarcity of studies on this subject and the heterogeneity of results, we identified possible biomarkers for cognitive deficits in the RA population. Further longitudinal studies are warranted to clarify these associations and the establishment of possible biomarkers for cognitive deficits in RA.


Asunto(s)
Artritis Reumatoide , Disfunción Cognitiva , Humanos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/epidemiología , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Factor de Necrosis Tumoral alfa
4.
FASEB J ; 34(3): 4163-4177, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31960508

RESUMEN

Genetic and pharmacological functional studies have provided evidence that the lack of Neuropeptide Y-Y1  receptor (Y1 R) signaling pathway induces a high bone mass phenotype in mice. However, clinical observations have shown that drug or genetic mediated improvement of bone mass might be associated to alterations to bone extracellular matrix (ECM) properties, leading to bone fragility. Hence, in this study we propose to characterize the physical, chemical and biomechanical properties of mature bone ECM of germline NPY-Y1 R knockout (Y1 R-/- ) mice, and compare to their wild-type (WT) littermates. Our results demonstrated that the high bone mass phenotype observed in Y1 R-/- mice involves alterations in Y1 R-/-  bone ECM ultrastructure, as a result of accelerated deposition of organic and mineral fractions. In addition, Y1 R-/- bone ECM displays enhanced matrix maturation characterized by greater number of mature/highly packed collagen fibers without pathological accumulation of immature/mature collagen crosslinks nor compromise of mineral crystallinity. These unique features of Y1 R-/-  bone ECM improved the biochemical properties of Y1 R-/-  bones, reflected by mechanically robust bones with diminished propensity to fracture, contributing to greater bone strength. These findings support the future usage of drugs targeting Y1 R signaling as a promising therapeutic strategy to treat bone loss-related pathologies.


Asunto(s)
Matriz Ósea/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Peso Corporal/genética , Peso Corporal/fisiología , Ensayo de Inmunoadsorción Enzimática , Masculino , Pruebas Mecánicas , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Receptores de Neuropéptido Y/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Espectrometría Raman , Microtomografía por Rayos X
5.
Lasers Med Sci ; 36(9): 1979-1988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34374881

RESUMEN

The purpose of this study is to analyze the influence of InGaAlP diode laser (660 nm) with or without an odontogenic medium (OM) in the functional activity of OD-21 cells. Undifferentiated OD-21 pulp cells were cultivated with or without OM and divided into four groups (n = 5): nonirradiated control (C -), nonirradiated + OM (C +), irradiated (L -), and irradiated + OM (L +). Laser application was performed in two sessions of a 24-h interval with an irradiance of 11.3 mW/cm2, energy density of 1 J/cm2, and total cumulative energy/well of 4.6 J. Cell proliferation, VEGF-164 expression, mineralization, and expression of Alp, Runx2, and Dmp1 genes, as well as immunolocalization of RUNX2 and MEPE proteins, were evaluated. Data were analyzed by statistical tests (α = 0.05). All studied groups showed a similar increase in cell proliferation with or without OM. After 7 and 10 days, a significatively higher concentration of VEGF-164 in L - group when compared to C - group was observed. A significant increase in mineralized nodules in the L + was noted when compared to C + in the same conditions. Photobiomodulation upregulated significantly Runx2 and Dmp1 expression after 10 days in L - and after 7 days in L + , with downregulation of Dmp1 after 10 days in L + group. Immunolocalization of RUNX2 and MEPE was expressive after 7 days of culture in the cytoplasm adjacent to the nucleus with a decrease after 10 days, regardless of the presence of OM. Photobiomodulation enhances metabolism associated with angiogenesis, gene expression, and mineralization regardless of the odontogenic medium in OD-21 cells.


Asunto(s)
Terapia por Luz de Baja Intensidad , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental , Odontogénesis
6.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360672

RESUMEN

Modular tissue engineering (MTE) is a novel "bottom-up" approach to create engineered biological tissues from microscale repeating units. Our aim was to obtain microtissue constructs, based on polymer microspheres (MSs) populated with cells, which can be further assembled into larger tissue blocks and used in bone MTE. Poly(L-lactide-co-glycolide) MS of 165 ± 47 µm in diameter were produced by oil-in-water emulsification and treated with 0.1 M NaOH. To improve cell adhesion, MSs were coated with poly-L-lysine (PLL) or human recombinant collagen type I (COL). The presence of oxygenated functionalities and PLL/COL coating on MS was confirmed by X-ray photoelectron spectroscopy (XPS). To assess the influence of medium composition on adhesion, proliferation, and osteogenic differentiation, preosteoblast MC3T3-E1 cells were cultured on MS in minimal essential medium (MEM) and osteogenic differentiation medium (OSG). Moreover, to assess the potential osteoblast-osteoclast cross-talk phenomenon and the influence of signaling molecules released by osteoclasts on osteoblast cell culture, a medium obtained from osteoclast culture (OSC) was also used. To impel the cells to adhere and grow on the MS, anti-adhesive cell culture plates were utilized. The results show that MS coated with PLL and COL significantly favor the adhesion and growth of MC3T3-E1 cells on days 1 and 7, respectively, in all experimental conditions tested. On day 7, three-dimensional MS/cell/extracellular matrix constructs were created owing to auto-assembly. The cells grown in such constructs exhibited high activity of early osteogenic differentiation marker, namely, alkaline phosphatase. Superior cell growth on PLL- and COL-coated MS on day 14 was observed in the OSG medium. Interestingly, deposition of extracellular matrix and its mineralization was particularly enhanced on COL-coated MS in OSG medium on day 14. In our study, we developed a method of spontaneous formation of organoid-like MS-based cell/ECM constructs with a few millimeters in size. Such constructs may be regarded as building blocks in bone MTE.


Asunto(s)
Huesos/citología , Matriz Extracelular/química , Microesferas , Osteoblastos/citología , Osteogénesis , Polímeros/química , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ratones , Andamios del Tejido/química
7.
FASEB J ; 33(8): 8697-8710, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31017803

RESUMEN

The bone marrow (BM) is the central hematopoietic organ in adult mammals, with great potential to be used as a tool to improve the efficacy of the body's response to a number of malignancies and stressful conditions. The nervous system emerges as a critical regulatory player of the BM both under homeostatic and pathologic settings, with essential roles in cellular anchorage and egress, stem cell differentiation, and endothelial cell permeability. This review collects the current knowledge on the interplay between the nervous system and the BM cell populations, with a focus on how the nervous system modulates hematopoietic stem and progenitor cell, mesenchymal stromal cell, and endothelial progenitor cell activity in BM. We have also highlighted the pathologies that have been associated with disturbances in the neuronal signaling in BM and discussed if targeting the nervous system, either by modulating the activity of specific neuronal circuits or by pharmacologically leveling the activity of sympathetic and sensorial signaling-responsive cells in BM, is a promising therapeutic approach to tackling pathologies from BM origin.-Leitão, L., Alves, C. J., Sousa, D. M., Neto, E., Conceição, F., Lamghari, M. The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibras Nerviosas/metabolismo , Regeneración , Animales , Células de la Médula Ósea/fisiología , Humanos , Células Madre Mesenquimatosas/fisiología , Fibras Nerviosas/fisiología , Transducción de Señal
8.
FASEB J ; 33(1): 857-872, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30044924

RESUMEN

Selectively recruiting bone marrow (BM)-derived stem and progenitor cells to injury sites is a promising therapeutic approach. The coordinated action of soluble factors is thought to trigger the mobilization of stem cells from the BM and recruit them to lesions to contribute to tissue regeneration. Nevertheless, the temporal response profile of the major cellular players and soluble factors involved in priming the BM and recruiting BM-derived cells to promote regeneration is unknown. We show that injury alters the BM cellular composition, introducing population-specific fluctuations during tissue regeneration. We demonstrate that injury causes an immediate, transient response of mesenchymal stromal cells and endothelial cells followed by a nonoverlapping increase in hematopoietic stem and progenitor cells. Moreover, BM reaction is identical whether the injury is inflicted on skin and muscle or also involves a bone defect, but these 2 injury paradigms trigger distinct systemic cytokine responses. Together, our results indicate that the BM response to injury in the early stages of regeneration is independent of the tissue-of-injury based on the 2 models used, but the injured tissue dictates the systemic cytokine response.-Leitão, L., Alves, C. J., Alencastre, I. S., Sousa, D. M., Neto, E., Conceição, F., Leitão, C., Aguiar, P., Almeida-Porada, G., Lamghari, M. Bone marrow cell response after injury and during early stage of regeneration is independent of the tissue-of-injury in 2 injury models.


Asunto(s)
Células de la Médula Ósea/citología , Modelos Biológicos , Regeneración , Heridas y Lesiones/patología , Animales , Linfocitos B/inmunología , Huesos/lesiones , Huesos/patología , Antígeno CD11b/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Análisis por Conglomerados , Citocinas/metabolismo , Masculino , Ratones , Músculos/lesiones , Músculos/patología , Cicatrización de Heridas , Heridas y Lesiones/inmunología
9.
Arch Toxicol ; 94(4): 1071-1083, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078021

RESUMEN

During the last decades, we have witnessed unparalleled changes in human eating habits and lifestyle, intensely influenced by cultural and social pressures. Sports practice became strongly implemented in daily routines, and visits to the gym peaked, driven by the indulgence in intensive 'weight-loss programs'. The pledge of boasting a healthy and beautiful body instigates the use of very attractive 'fat burners', which are purportedly advertised as safe products, easily available in the market and expected to quickly reduce body weight. In this context, the slimming properties of 2,4-dinitrophenol (2,4-DNP) galvanised its use as a weight-loss product, despite the drug ban for human consumption in many countries since 1938, due to its adverse effects. The main symptoms associated with 2,4-DNP intoxication, including hyperthermia, tachycardia, decreased blood pressure, and acute renal failure, motivated a worldwide warning, issued by the Interpol Anti-Doping Unit in 2015, reinforcing its hazard. Information on the effects of 2,4-DNP mainly derive from the intoxication cases reported by emergency care units, for which there is no specific antidote or treatment. This review provides a comprehensive update on 2,4-DNP use, legislation and epidemiology, chemistry and analytical methodologies for drug determination in commercial products and biological samples, pharmacokinetics and pharmacodynamics, toxicological effects, and intoxication diagnosis and management.


Asunto(s)
2,4-Dinitrofenol/efectos adversos , Fármacos Antiobesidad/efectos adversos , Exposición Dietética/estadística & datos numéricos , 2,4-Dinitrofenol/toxicidad , Fármacos Antiobesidad/toxicidad , Dieta , Conducta Alimentaria , Pérdida de Peso
10.
Sensors (Basel) ; 19(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671733

RESUMEN

The Internet of Things (IoT) is a rapidly evolving technology that is changing almost every business, and aquaculture is no exception. In this work we present an integrated IoT platform for the acquisition of environmental data and the monitoring of aquaculture environments, supported by a real-time communication and processing network. The complete monitoring platform consists of environmental sensors equipped in a swarm of mobile Unmanned Surface Vehicles (USVs) and Buoys, capable of collecting aquatic and outside information, and sending it to a central station where it will be stored and processed. The sensing platform, formed by the USVs and Buoys, are equipped with multi-communication technology: IEEE 802.11n (Wi-Fi) and Bluetooth for short range communication, for mission delegation and the transmission of data collection, and LoRa for periodic report. On the back-end side, supported by FIWARE technology, an interactive web-based platform can be used to define sensing missions and for data visualization. Results on the sensing platform lifetime, mission control and delay processing time are presented to assess the performance of the aquatic monitoring system.


Asunto(s)
Acuicultura , Sistemas de Computación , Monitoreo del Ambiente/instrumentación , Redes de Comunicación de Computadores , Aplicaciones Móviles , Programas Informáticos
11.
Sensors (Basel) ; 18(10)2018 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-30322143

RESUMEN

The Smart City concept is starting to extend into maritime environments alongside with the increase of Unmanned Surface Vehicles (USV) models on the market. Consequently, by joining both Smart City and USV technologies, a set of platforms and applications for aquatic environments are emerging. This work proposes a low-cost aquatic mobile sensing platform for data gathering with a swarm of USVs communicating through a Delay-Tolerant Network (DTN). A set of DTN link quality-based routing strategies select the best quality path in a dynamic approach so the sensed information is able to reach the mobile gateway in a reliable way. A Link Quality Estimation (LQE) approach is proposed and its accuracy is evaluated through real experimentation. An aquatic simulation environment, considering both navigation and communication layers, was also proposed and used to evaluate the performance of the proposed routing strategies, and complement real environment performance studies.

12.
J Neurosci ; 36(46): 11573-11584, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852766

RESUMEN

Microfluidic technology has become a valuable tool to the scientific community, allowing researchers to study fine cellular mechanisms with higher variable control compared with conventional systems. It has evolved tremendously, and its applicability and flexibility made its usage grow exponentially and transversely to several research fields. This has been particularly noticeable in neuroscience research, where microfluidic platforms made it possible to address specific questions extending from axonal guidance, synapse formation, or axonal transport to the development of 3D models of the CNS to allow pharmacological testing and drug screening. Furthermore, the continuous upgrade of microfluidic platforms has allowed a deeper study of the communication occurring between different neuronal and glial cells or between neurons and other peripheral tissues, both in physiological and pathological conditions. Importantly, the evolution of microfluidic technology has always been accompanied by the development of new computational tools addressing data acquisition, analysis, and modeling.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Separación Celular/instrumentación , Citometría de Flujo/instrumentación , Neuronas/fisiología , Técnicas de Placa-Clamp/instrumentación , Ingeniería de Tejidos/instrumentación , Animales , Reactores Biológicos , Células Cultivadas , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Evaluación de la Tecnología Biomédica
13.
Nutrients ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794657

RESUMEN

Adequate sodium and potassium intake, along with adherence to the Mediterranean diet (MedDiet), are key factors for preventing hypertension and cerebrovascular diseases. However, data on the consumption of these nutrients within the MedDiet are scarce. This cross-sectional study aims to assess the association between MedDiet adherence and sodium/potassium intake in the MIND-Matosinhos randomized controlled trial, targeting Portuguese adults at a high risk of dementia. Good adherence to the MedDiet was defined using the Portuguese Mediterranean Diet Adherence Screener questionnaire (≥10 points), and both sodium/potassium intakes were estimated from 24-hour urine collections. The association between MedDiet adherence and these nutrients' intake (dichotomized by the median) was quantified by calculating odds ratios (OR) and respective 95% confidence intervals (95% CI) using a logistic regression. A total of 169 individuals (60.9% female; median age: 70 years; range: 36-85 years) were included. Good adherence to the MedDiet was observed among 18.3% of the sample. After adjusting for sex, age, education and using antihypertensive drugs, good MedDiet adherence was associated with higher sodium (OR = 3.11; 95% CI: 1.27-7.65) and potassium intake (OR = 9.74; 95% CI: 3.14-30.26). Increased adherence to the MedDiet may contribute to a higher potassium intake but seems to have limited effects on the adequacy of sodium levels.


Asunto(s)
Demencia , Dieta Mediterránea , Potasio en la Dieta , Sodio en la Dieta , Humanos , Femenino , Masculino , Anciano , Demencia/prevención & control , Persona de Mediana Edad , Potasio en la Dieta/administración & dosificación , Estudios Transversales , Sodio en la Dieta/administración & dosificación , Anciano de 80 o más Años , Adulto , Factores de Riesgo , Cooperación del Paciente/estadística & datos numéricos , Portugal
14.
Neurochem Int ; 178: 105796, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936553

RESUMEN

The Ocimum species present active compounds with the potential to develop drugs for treating chronic disease conditions, such as anxiety and seizures. The present study aims to investigate the anticonvulsant and anxiolytic-like effect of the essential oil from O. basilicum Linn (OEFOb) leaves and its major constituent estragole (ES) in vivo on adult zebrafish (aZF) and in silico. The aZF were treated with OEFOb or ES or vehicle and submitted to the tests of toxicity, open-field, anxiety, and convulsion and validated the interactions of the estragole on the involvement of GABAergic and serotonergic receptors by molecular docking assay. The results showed that the oral administration of OEFOb and ES did not have a toxic effect on the aZF and showed anxiolytic-like effects with the involvement of GABAA, 5-HT1, 5-HT2A/2C and 5-HT3A/3B as well on anxiety induced by alcohol withdrawal. The OEFOb and ES showed anticonvulsant potential attenuating the seizures induced by pentylenetetrazole (PTZ) by modulation of the GABAA system. Both anxiolytic and anticonvulsant effects were corroborated by the potential of the interaction of ES by in silico assay. These study samples demonstrate the pharmacological evidence and potential for using these compounds to develop new anxiolytic and anticonvulsant drugs.

15.
Front Neurosci ; 17: 1295608, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164245

RESUMEN

Introduction: Emotion recognition is a core feature of social perception. In particular, perception of dynamic facial emotional expressions is a major feature of the third visual pathway. However, the classical N170 visual evoked signal does not provide a pure correlate of such processing. Indeed, independent component analysis has demonstrated that the N170 component is already active at the time of the P100, and is therefore distorted by early components. Here we implemented, a dynamic face emotional paradigm to isolate a more pure face expression selective N170. We searched for a neural correlate of perception of dynamic facial emotional expressions, by starting with a face baseline from which a facial expression evolved. This allowed for a specific facial expression contrast signal which we aimed to relate with social communication abilities and cortical gamma-aminobutyric acid (GABA) levels. Methods: We recorded event-related potentials (ERPs) and Magnetic Resonance (MRS) measures in 35 typically developing (TD) children, (10-16 years) sex-matched, during emotion recognition of an avatar morphing/unmorphing from neutral to happy/sad expressions. This task allowed for the elimination of the contribution low-level visual components, in particular the P100, by morphing baseline isoluminant neutral faces into specific expressions, isolating dynamic emotion recognition. Therefore, it was possible to isolate a dynamic face sensitive N170 devoid of interactions with earlier components. Results: We found delayed N170 and P300, with a hysteresis type of dependence on stimulus trajectory (morphing/unmorphing), with hemispheric lateralization. The delayed N170 is generated by an extrastriate source, which can be related to the third visual pathway specialized in biological motion processing. GABA levels in visual cortex were related with N170 amplitude and latency and predictive of worse social communication performance (SCQ scores). N170 latencies reflected delayed processing speed of emotional expressions and related to worse social communication scores. Discussion: In sum, we found a specific N170 electrophysiological signature of dynamic face processing related to social communication abilities and cortical GABA levels. These findings have potential clinical significance supporting the hypothesis of a spectrum of social communication abilities and the identification of a specific face-expression sensitive N170 which can potentially be used in the development of diagnostic and intervention tools.

16.
Res Vet Sci ; 154: 84-88, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36512978

RESUMEN

The aim of this study was to evaluate de immunoexpression of ezrin in gastric cells of domestic cats infected with Helicobacter spp. and with chronic gastritis. Twenty paraffin-embedded gastric samples were selected based on previous positive results for Helicobacter spp. in the Rapid Urease Test, Warthin-Starry staining and cytology. Haematoxylin-eosin stained sections was done to evaluate inflammatory cell infiltrates. Immunohistochemical analysis was done using anti-Helicobacter pylori and anti-Ezrin antibodies. The analysis of inflammatory infiltrates revealed 8/20 (40%) in score 0, 11/20 (55%) in score 1 and 1/20 (5%) in score 2. The labelling observed in the immunohistochemical analysis using anti-Helicobacter spp. antibody showed no samples with score 0; 4/20 (20%) with score 1; 7/20 35% with score 2 and 9/20 (45%) with score 3. Ezrin overexpression on the cytoplasm of parietal cells was revealed in 18 out of 20 samples (90%). Of these, 10 cases (45%) achieved the score 1; 6 cases (30%) the score 2 and 2 cases (10%) the score 3. On the surface and pit cells there was an increase in Ezrin immnoexpression in 12 out of the 20 samples (60%), of which 8 samples (40%) achieved the score 1 and 4 samples (20%) the score 2. No sample were classified in score 3. Statistically significant differences (p = 0.026) were observed between the inflammatory infiltrate in the gastric mucosa and the immunoexpression of Ezrin in the cytoplasm of parietal cells. It was concluded that ezrin had an increased immunoexpression in the gastric mucosa of cats with chronic gastritis.


Asunto(s)
Enfermedades de los Gatos , Gastritis , Helicobacter pylori , Helicobacter , Animales , Gatos , Enfermedades de los Gatos/metabolismo , Mucosa Gástrica , Gastritis/veterinaria , Gastritis/metabolismo
17.
Front Immunol ; 14: 1168607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153579

RESUMEN

Introduction: Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods: Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion: We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.


Asunto(s)
Mycobacterium tuberculosis , Proteína Amiloide A Sérica , Humanos , Ratones , Animales , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Huesos/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Mycobacterium tuberculosis/metabolismo
18.
Biomolecules ; 13(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37189370

RESUMEN

The sympathetic nervous system (SNS), particularly through the ß2 adrenergic receptor (ß2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting ß2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under ß2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under ß-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.


Asunto(s)
Resorción Ósea , Neoplasias de la Mama , Humanos , Femenino , Adrenérgicos , Neoplasias de la Mama/tratamiento farmacológico , Secretoma , Proteómica , Epinefrina/farmacología
19.
Nutrients ; 14(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35334915

RESUMEN

Although web-based interventions are attractive to researchers and users, the evidence about their effectiveness in the promotion of health behaviour change is still limited. Our aim was to review the effectiveness of web-based interventions used in health behavioural change in adolescents regarding physical activity, eating habits, tobacco and alcohol use, sexual behaviour, and quality of sleep. Studies published from 2016 till the search was run (May-to-June 2021) were included if they were experimental or quasi-experimental studies, pre-post-test studies, clinical trials, or randomized controlled trials evaluating the effectiveness of web-based intervention in promoting behaviour change in adolescents regarding those health behaviours. The risk of bias assessment was performed by using the Effective Public Health Practice Project (EPHPP)-Quality Assessment Tool for Quantitative Studies. Fourteen studies were included. Most were in a school setting, non-probabilistic and relatively small samples. All had a short length of follow-up and were theory driven. Thirteen showed significant positive findings to support web-based interventions' effectiveness in promoting health behaviour change among adolescents but were classified as low evidence quality. Although this review shows that web-based interventions may contribute to health behaviour change among adolescents, these findings rely on low-quality evidence, so it is urgent to test these interventions in larger controlled trials with long-term maintenance.


Asunto(s)
Intervención basada en la Internet , Adolescente , Ejercicio Físico , Conductas Relacionadas con la Salud , Promoción de la Salud , Humanos , Sueño
20.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454788

RESUMEN

Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and ß-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA