Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Genet ; 60(6): 620-626, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36368868

RESUMEN

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Asunto(s)
Labio Leporino , Fisura del Paladar , Síndrome de Goldenhar , Humanos , Animales , Síndrome de Goldenhar/genética , Pez Cebra/genética , Variaciones en el Número de Copia de ADN/genética , Factores de Transcripción Otx/genética
2.
J Med Genet ; 53(10): 697-704, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27334371

RESUMEN

BACKGROUND: De novo mutations are a frequent cause of disorders related to brain development. We report the results of screening patients diagnosed with both epilepsy and intellectual disability (ID) using exome sequencing to identify known and new causative de novo mutations relevant to these conditions. METHODS: Exome sequencing was performed on 39 patient-parent trios to identify de novo mutations. Clinical significance of de novo mutations in genes was determined using the American College of Medical Genetics and Genomics standard guidelines for interpretation of coding variants. Variants in genes of unknown clinical significance were further analysed in the context of previous trio sequencing efforts in neurodevelopmental disorders. RESULTS: In 39 patient-parent trios we identified 29 de novo mutations in coding sequence. Analysis of de novo and inherited variants yielded a molecular diagnosis in 11 families (28.2%). In combination with previously published exome sequencing results in neurodevelopmental disorders, our analysis implicates HECW2 as a novel candidate gene in ID and epilepsy. CONCLUSIONS: Our results support the use of exome sequencing as a diagnostic approach for ID and epilepsy, and confirm previous results regarding the importance of de novo mutations in this patient group. The results also highlight the utility of network analysis and comparison to previous large-scale studies as strategies to prioritise candidate genes for further studies. This study adds knowledge to the increasingly growing list of causative and candidate genes in ID and epilepsy and highlights HECW2 as a new candidate gene for neurodevelopmental disorders.


Asunto(s)
Epilepsia/metabolismo , Discapacidad Intelectual/metabolismo , Mutación , Ubiquitina-Proteína Ligasas/genética , Análisis Mutacional de ADN , Epilepsia/genética , Exoma , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Síndrome
4.
Mol Genet Genomic Med ; 12(1): e2295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37916443

RESUMEN

BACKGROUND: Microcephaly with early-onset seizures (MCSZ) is a neurodevelopmental disorder caused by pathogenic variants in the DNA strand break repair protein, polynucleotide kinase 3'-phosphatase (PNKP). METHODS: We have used whole genome sequencing and Sanger sequencing to identify disease-causing variants, followed by a minigene assay, Western blotting, alkaline comet assay, γH2AX, and ADP-ribose immunofluorescence. RESULTS: Here, we describe a patient with compound heterozygous variants in PNKP, including a missense variant in the DNA phosphatase domain (T323M) and a novel splice acceptor site variant within the DNA kinase domain that we show leads to exon skipping. We show that primary fibroblasts derived from the patient exhibit greatly reduced levels of PNKP protein and reduced rates of DNA single-strand break repair, confirming that the mutated PNKP alleles are dysfunctional. CONCLUSION: The data presented show that the detected compound heterozygous variants result in reduced levels of PNKP protein, which affect the repair of both oxidative and TOP1-induced single-strand breaks, and most likely causes MCSZ in this patient.


Asunto(s)
Enzimas Reparadoras del ADN , Microcefalia , Humanos , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Microcefalia/genética , Microcefalia/patología , Mutación , Convulsiones/genética , ADN , Monoéster Fosfórico Hidrolasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
5.
Am J Med Genet A ; 158A(7): 1633-40, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22678713

RESUMEN

Patients with a submicroscopic deletion at 1q43q44 present with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, and corpus callosum abnormalities. However, the precise relationship between most of deleted genes and the clinical features in these patients still remains unclear. We studied 11 unrelated patients with 1q44 microdeletion. We showed that the deletions occurred de novo in all patients for whom both parents' DNA was available (10/11). All patients presented with moderate to severe ID, seizures and non-specific craniofacial anomalies. By oligoarray-based comparative genomic hybridization (aCGH) covering the 1q44 region at a high resolution, we obtained a critical deleted region containing two coding genes-HNRNPU and FAM36A-and one non-coding gene-NCRNA00201. All three genes were expressed in different normal human tissues, including in human brain, with highest expression levels in the cerebellum. Mutational screening of the HNRNPU and FAM36A genes in 191 patients with unexplained isolated ID did not reveal any deleterious mutations while the NCRNA00201 non-coding gene was not analyzed. Nine of the 11 patients did not present with microcephaly or corpus callosum abnormalities and carried a small deletion containing HNRNPU, FAM36A, and NCRNA00201 but not AKT3 and ZNF238, two centromeric genes. These results suggest that HNRNPU, FAM36A, and NCRNA00201 are not major genes for microcephaly and corpus callosum abnormalities but are good candidates for ID and seizures.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 1 , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Discapacidad Intelectual/genética , ARN no Traducido/genética , Convulsiones/genética , Preescolar , Hibridación Genómica Comparativa , Facies , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Cariotipificación , Masculino , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA