Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Math Biol ; 86(11): 127, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284973

RESUMEN

Density-dependent population dynamic models strongly influence many of the world's most important harvest policies. Nearly all classic models (e.g. Beverton-Holt and Ricker) recommend that managers maintain a population size of roughly 40-50 percent of carrying capacity to maximize sustainable harvest, no matter the species' population growth rate. Such insights are the foundational logic behind most sustainability targets and biomass reference points for fisheries. However, a simple, less-commonly used model, called the Hockey-Stick model, yields very different recommendations. We show that the optimal population size to maintain in this model, as a proportion of carrying capacity, is one over the population growth rate. This leads to more conservative optimal harvest policies for slow-growing species, compared to other models, if all models use the same growth rate and carrying capacity values. However, parameters typically are not fixed; they are estimated after model-fitting. If the Hockey-Stick model leads to lower estimates of carrying capacity than other models, then the Hockey-Stick policy could yield lower absolute population size targets in practice. Therefore, to better understand the population size targets that may be recommended across real fisheries, we fit the Hockey-Stick, Ricker and Beverton-Holt models to population time series data across 284 fished species from the RAM Stock Assessment database. We found that the Hockey-Stick model usually recommended fisheries maintain population sizes higher than all other models (in 69-81% of the data sets). Furthermore, in 77% of the datasets, the Hockey-Stick model recommended an optimal population target even higher than 60% of carrying capacity (a widely used target, thought to be conservative). However, there was considerable uncertainty in the model fitting. While Beverton-Holt fit several of the data sets best, Hockey-Stick also frequently fit similarly well. In general, the best-fitting model rarely had overwhelming support (a model probability of greater than 95% was achieved in less than five percent of the datasets). A computational experiment, where time series data were simulated from all three models, revealed that Beverton-Holt often fit best even when it was not the true model, suggesting that fisheries data are likely too small and too noisy to resolve uncertainties in the functional forms of density-dependent growth. Therefore, sustainability targets may warrant revisiting, especially for slow-growing species.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces , Conceptos Matemáticos , Modelos Biológicos , Densidad de Población , Dinámica Poblacional , Explotaciones Pesqueras/estadística & datos numéricos , Animales , Conservación de los Recursos Naturales/estadística & datos numéricos , Dinámica Poblacional/estadística & datos numéricos , Peces/crecimiento & desarrollo , Biomasa , Simulación por Computador
2.
Annu Rev Stat Appl ; 9: 529-555, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-39006247

RESUMEN

Markov chain Monte Carlo is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which directly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA