Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 592(6): 1325-40, 2014 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-24396063

RESUMEN

Insulin plays an important role in the control of hepatic glucose production. Insulin resistant states are commonly associated with excessive hepatic glucose production, which contributes to both fasting hyperglycaemia and exaggerated postprandial hyperglycaemia. In this regard, increased activity of phosphatases may contribute to the dysregulation of gluconeogenesis. Mitogen-activated protein kinase phosphatase-3 (MKP-3) is a key protein involved in the control of gluconeogenesis. MKP-3-mediated dephosphorylation activates FoxO1 (a member of the forkhead family of transcription factors) and subsequently promotes its nuclear translocation and binding to the promoters of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). In this study, we investigated the effects of exercise training on the expression of MKP-3 and its interaction with FoxO1 in the livers of obese animals. We found that exercised obese mice had a lower expression of MKP-3 and FoxO1/MKP-3 association in the liver. Further, the exercise training decreased FoxO1 phosphorylation and protein levels of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and gluconeogenic enzymes (PEPCK and G6Pase). These molecular results were accompanied by physiological changes, including increased insulin sensitivity and reduced hyperglycaemia, which were not caused by reductions in total body mass. Similar results were also observed with oligonucleotide antisense (ASO) treatment. However, our results showed that only exercise training could reduce an obesity-induced increase in HNF-4α protein levels while ASO treatment alone had no effect. These findings could explain, at least in part, why additive effects of exercise training treatment and ASO treatment were not observed. Finally, the suppressive effects of exercise training on MKP-3 protein levels appear to be related, at least in part, to the reduced phosphorylation of Extracellular signal-regulated kinases (ERK) in the livers of obese mice.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/metabolismo , Gluconeogénesis/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Fosfatasa 6 de Especificidad Dual/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Resistencia a la Insulina , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Obesidad/etiología , Oligodesoxirribonucleótidos Antisentido/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Factores de Transcripción/metabolismo
2.
Immun Ageing ; 10(1): 8, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23442260

RESUMEN

It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRß/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRß/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA