Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 316, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700735

RESUMEN

Nowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today. The aim of this study is to develop new-generation antibiotics that inhibit both biofilm-producing bacteria and the biofilm itself. For this purpose, we designed four different peptides by combining two amino acid forms (D- and L-) with the same sequence having alpha helix structures. It was found that the combined use of these two forms can increase antimicrobial efficacy more than 30-fold. These results are supported by molecular modeling and scanning electron microscopy (SEM), at the same time cytotoxicity (IC50) and hemotoxicity (HC50) values remained within the safe range. Furthermore, antibiofilm activities of these peptides were investigated. Since the existing biofilm inhibition methods in the literature do not technically simulate the exact situation, in this study, we have developed a real-time observable biofilm model and a new detection method based on it, which we call the CoMIC method. Findings have shown that the NET1 peptide with D-leucine amino acid in its structure and the NET3 peptide with D-arginine amino acid in its structure are effective in inhibiting biofilm. As a conclusion, our peptides can be considered as potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in biofilm and clinical important bacteria. KEY POINTS: • Antimicrobial peptides were developed to inhibit both biofilms producing bacteria and the biofilm itself. • CoMIC will fill a very crucial gap in understanding biofilms and conducting the necessary quantitative studies. • Molecular modelling studies, NET1 peptide molecules tends to move towards and adhere to the membrane within nanoseconds.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Modelos Moleculares , Microscopía Electrónica de Rastreo , Bacterias/efectos de los fármacos
2.
Adv Sci (Weinh) ; 11(20): e2306035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501901

RESUMEN

Layered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH-responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH-based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Hidróxidos , Ingeniería de Tejidos , Hidróxidos/química , Humanos , Sistemas de Liberación de Medicamentos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Ingeniería de Tejidos/métodos , Técnicas Biosensibles/métodos , Animales
3.
Pharmaceutics ; 16(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204390

RESUMEN

Antibiotic-resistant microorganisms have become a serious threat to public health, resulting in hospital infections, the majority of which are caused by commonly used urinary tract catheters. Strategies for preventing bacterial adhesion to the catheters' surfaces have been potentially shown as effective methods, such as coating thesurface with antimicrobial biomolecules. Here, novel antimicrobial peptides (AMPs) were designed as potential biomolecules to prevent antibiotic-resistant bacteria from binding to catheter surfaces. Thiolated AMPs were synthesized using solid-phase peptide synthesis (SPPS), and prep-HPLC was used to obtain AMPs with purity greater than 90%. On the other side, the silicone catheter surface was activated by UV/ozone treatment, followed by functionalization with allyl moieties for conjugation to the free thiol group of cystein in AMPs using thiol-ene click chemistry. Peptide-immobilized surfaces were found to become more resistant to bacterial adhesion while remaining biocompatible with mammalian cells. The presence and site of conjugation of peptide molecules were investigated by immobilizing them to catheter surfaces from both ends (C-Pep and Pep-C). It was clearly demonstrated that AMPs conjugated to the surface via theirN terminus have a higher antimicrobial activity. This strategy stands out for its effective conjugation of AMPs to silicone-based implant surfaces for the elimination of bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA