Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 127(46): 9842-9852, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37851528

RESUMEN

The complete active space self-consistent field (CASSCF) method is a cornerstone in modern excited-state quantum chemistry providing the starting point for most common multireference computations. However, CASSCF, when used with a minimal active space, can produce significant errors (>2 eV) even for the excitation energies of simple hydrocarbons if the states of interest possess ionic character. After illustrating this problem in some detail, we present a diagnostic for ionic character, denoted as Q at, that is readily computed from the transition density. A set of 11 molecules is considered to study errors in vertical excitation energies. State-averaged CASSCF obtains a mean absolute error (MAE) of 0.87 eV for the 34 singlet states considered. We highlight a strong correlation between the obtained errors and the Q at diagnostic, illustrating its power to predict problematic cases. Conversely, using multireference configuration interaction with single and double excitations and Pople's size extensivity correction (MR-CISD+P), excellent results are obtained with an MAE of 0.11 eV. Furthermore, correlations with the Q at diagnostic disappear. In summary, we hope that the presented diagnostic will facilitate reliable and user-friendly multireference computations on conjugated organic molecules.

2.
J Phys Chem A ; 124(51): 10717-10725, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33320001

RESUMEN

The rates of numerous activated reactions between neutral species increase at low temperatures through quantum mechanical tunneling of light hydrogen atoms. Although tunneling processes involving molecules or heavy atoms are well known in the condensed phase, analogous gas-phase processes have never been demonstrated experimentally. Here, we studied the activated CH + CO2 → HCO + CO reaction in a supersonic flow reactor, measuring rate constants that increase rapidly below 100 K. Mechanistically, tunneling is shown to occur by CH insertion into the C-O bond, with rate calculations accurately reproducing the experimental values. To exclude the possibility of H-atom tunneling, CD was used in additional experiments and calculations. Surprisingly, the equivalent CD + CO2 reaction accelerates at low temperature as zero-point energy effects remove the barrier to product formation. In conclusion, heavy-particle tunneling effects might be responsible for the observed reactivity increase at lower temperatures for the CH + CO2 reaction, while the equivalent effect for the CD + CO2 reaction results instead from a submerged barrier with respect to reactants.

3.
J Chem Phys ; 152(13): 134110, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268762

RESUMEN

The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.

4.
J Phys Chem A ; 123(41): 8968-8975, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31536345

RESUMEN

The potential energy curves (PECs) for the interaction of 3CH2 with 3O2 in singlet and triplet potential energy surfaces (PESs) leading to singlet and triplet Criegee intermediates (CH2OO) are studied using electronic structure calculations. The bonding mechanism is interpreted by analyzing the ground state multireference configuration interaction (MRCI) wave function of the reacting species and at all points along the PES. The interaction of 3CH2 with 3O2 on the singlet surface leads to a flat long-range attractive PEC lacking any maxima or minima along the curve. The triplet surface stems into a maximum along the curve resulting in a transition state with an energy barrier of 5.3 kcal/mol at CASSCF(4,4)/cc-pVTZ level. The resulting 3CH2OO is less stable than the 1CH2OO. In this study, the biradical character (ß) is used as a measure to understand the difference in the topology of the singlet and triplet PECs and the relation of the biradical nature of the species with their structures. The 3CH2OO has a larger biradical character than 1CH2OO, and because of the larger bond order of 1CH2OO, the C-O covalent bond becomes harder to break, thereby stabilizing 1CH2OO. Thus, this study provides insights into the shape of the PEC obtained from the reaction between 3CH2 and 3O2 in terms of their bonding nature and from the shape of the curves, the temperature dependence or independence of the rate of the reaction is discussed.

5.
J Phys Chem A ; 122(28): 5905-5910, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29939738

RESUMEN

The reaction of methanol (CH3OH) with atomic nitrogen was studied considering three elementary reactions, the hydrogen abstractions from the hydroxyl or methyl groups (R1 and R3, respectively) and the C-O bond break (R2). Thermochemical properties were obtained using ab initio methods and density functional theory approximations with aug-cc-pVXZ (X = T and Q) basis sets. The minimum energy path was built with a dual-level methodology using the BB1K functional as the low-level and the CCSD(T) as the high-level. This surface was used to calculate the thermal rate constants in the frame of variational transitional state theory considering the tunneling effects. Our results indicate the dehydrogenation of the methyl group (R3) as the dominant path with k R3 = 7.5 × 10-27 cm3·molecule-1·s-1 at 300 K. The thermal rate constants were fitted to a modified Arrhenius equation for use in mechanism studies of the methanol decomposition.

6.
J Chem Phys ; 149(2): 024307, 2018 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30007387

RESUMEN

In recent years, ozone and its isotopologues have been a topic of interest in many fields of research, due to its importance in atmospheric chemistry and its anomalous isotopic enrichment-or the so-called "mass-independent fractionation." In the field of potential energy surface (PES) creation, debate over the existence of a potential barrier just under the dissociation threshold (referred to as a "potential reef") has plagued research for some years. Recently, Dawes and co-workers [Dawes, Lolur, Li, Jiang, and Guo (DLLJG) J. Chem. Phys. 139, 201103 (2013)] created a highly accurate global PES, for which the reef is found to be replaced with a (monotonic) "plateau." Subsequent dynamical calculations on this "DLLJG" PES have shown improved agreement with experiment, particularly the vibrational spectrum. However, it is well known that reaction dynamics is also highly influenced by the rovibrational states, especially in cases like ozone that assume a Lindemann-type mechanism. Accordingly, we present the first significant step toward a complete characterization of the rovibrational spectrum for various isotopologues of ozone, computed using the DLLJG PES together with the ScalIT suite of parallel codes. Additionally, artificial neural networks are used in an innovative fashion-not to construct the PES function per se but rather to greatly speed up its evaluation.

7.
J Phys Chem A ; 121(2): 419-428, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28005366

RESUMEN

The reaction system formed by the methanethiol molecule (CH3SH) and a hydrogen atom was studied via three elementary reactions, two hydrogen abstractions and the C-S bond cleavage (CH3SH + H → CH3S + H2 (R1); → CH2SH + H2 (R2); → CH3 + H2S (R3)). The stable structures were optimized with various methodologies of the density functional theory and the MP2 method. Two minimum energy paths for each elementary reaction were built using the BB1K and MP2 methodologies, and the electronic properties on the reactants, products, and saddle points were improved with coupled cluster theory with single, double, and connected triple excitations (CCSD(T)) calculations. The sensitivity of coupling the low and high-level methods to calculate the thermochemical and rate constants were analyzed. The thermal rate constants were obtained by means of the improved canonical variational theory (ICVT) and the tunneling corrections were included with the small curvature tunneling (SCT) approach. Our results are in agreement with the previous experimental measurements and the calculated branching ratio for R1:R2:R3 is equal to 0.96:0:0.04, with kR1 = 9.64 × 10-13 cm3 molecule-1 s-1 at 298 K.

8.
J Chem Phys ; 147(9): 094306, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886655

RESUMEN

The association/dissociation reaction path for ozone (O2 + O ↔ O3) is notoriously difficult to describe accurately using ab initio electronic structure theory, due to the importance of both strong and dynamic electron correlations. Experimentally, spectroscopic studies of the highest lying recorded vibrational states combined with the observed negative temperature dependence of the kinetics of oxygen isotope exchange reactions confirm that the reaction is barrierless, consistent with the latest potential energy surfaces. Previously reported potentials based on Davidson-corrected internally contracted multireference configuration interaction (MRCI) suffer from a spurious reef feature in the entrance channel even when extrapolated towards the complete basis set limit. Here, we report an analysis of comparisons between a variety of electronic structure methods including internally contracted and uncontracted MRCI (with and without Davidson corrections), as well as full configuration interaction quantum Monte Carlo, fixed-node diffusion Monte Carlo, and density matrix renormalization group.

9.
J Phys Chem A ; 119(51): 12607-14, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26592088

RESUMEN

The kinetics of the reaction of N2H4 with oxygen depends sensitively on the initial conditions used. In oxygen-rich systems, the rate constant shows a conventional positive temperature dependence, while in hydrazine-rich setups the dependence is negative in certain temperature ranges. In this study, a theoretical model is presented that adequately reproduces the experimental results trend and values for hydrazine-rich environment, consisting of the hydrogen abstraction from the hydrazine (N2H4) dimer by an oxygen atom. The thermochemical properties of the reaction were computed using two quantum chemical approaches, the coupled cluster theory with single, double, and noniterative triple excitations (CCSD(T)) and the M06-2X DFT approach with the aug-cc-pVTZ and the maug-cc-pVTZ basis sets, respectively. The kinetic data were calculated with the improved canonical variational theory (ICVT) using a dual-level methodology to build the reaction path. The tunneling effects were considered by means of the small curvature tunneling (SCT) approximation. Potential wells on both sides of the reaction ((N2H4)2 + O → N2H4···N2H3 + OH) were determined. A reaction path with a negative activation energy was found leading, in the temperature range of 250-423 K, to a negative dependence of the rate constant on the temperature, which is in good agreement with the experimental measurements. Therefore, the consideration of the hydrazine dimer model provides significantly improved agreement with the experimental data and should be included in the mechanism of the global N2H4 combustion process, as it can be particularly important in hydrazine-rich systems.


Asunto(s)
Hidrazinas/química , Oxígeno/química , Teoría Cuántica , Temperatura , Dimerización , Hidrogenación , Cinética
10.
J Phys Chem A ; 119(9): 1628-35, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25198423

RESUMEN

Thermochemical and kinetics properties of the hydrogen abstraction from the hydrazine molecule (N2H4) by an oxygen atom were computed using high-level ab initio methods and the M06-2X DFT functional with aug-cc-pVXZ (X = T, Q) and maug-cc-pVTZ basis sets, respectively. The properties along the reaction path were obtained using the dual-level methodology to build the minimum energy path with the potential energy surface obtained with the M06-2X method and thermochemical properties corrected with the CCSD(T)/CBS//M06-2X/maug-cc-pVTZ results. The thermal rate constants were calculated in the framework of variational transition-state theory. Wells on both sides of the reaction (reactants and products) were found and considered in the chemical kinetics calculations. Additionally, the product yields were investigated by means of a study of the triplet and singlet surfaces of the N2H4 + O → N2H2 + H2O reaction.

12.
J Chem Phys ; 139(12): 124316, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24089776

RESUMEN

Accurate potential energy curves and molecular constants for the low-lying electronic states of CuX(y) (X = B, Al; y = 0, +1) were investigated using the complete active space self-consistent field/multireference configuration interaction (MRCI) methodology with aug-cc-pV5Z basis set. The photoionization spectra of CuX were computed, showing electron detachment in the region of far ultraviolet. The results complement the previous theoretical characterizations and the few experimental studies. A comparative analysis was carried out concerning the different choices of reference configuration state functions in the MRCI calculations with and without the contribution of scalar relativistic effects. The results obtained with a small reference set adequately constructed are competitive to those using a much larger number of configuration state functions, and also the scalar relativistic effects improve significantly the molecular constants in this kind of system containing a 3d metal atom.

13.
J Mol Model ; 28(8): 229, 2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35871116

RESUMEN

This investigation provides accurate rate constant values for a set of elementary reactions relevant to mixtures between molecular hydrogen (H2) and carbon monoxide (CO) such as syngas. We considered intermediates and products including formaldehyde (H2CO), hydroxymethylene (c-HCOH and t-HCOH) and methanol (CH3OH). The calculations were performed employing the improved canonical variational transition state theory with small-curvature tunneling corrections based on high-level electronic structure results. This study demonstrates for the first time that H2 can act as an effective catalyst to the reaction from t-HCOH to H2CO. In this case, the adiabatic barrier height for the reaction decreases from 30.6 kcal⋅mol- 1 to 18.1 kcal⋅mol- 1 in the presence of H2. The results obtained here can improve the comprehension regarding processes such as the combustion of hydrogen-rich syngas.

14.
J Mol Model ; 27(9): 264, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34435261

RESUMEN

The reaction between carbon monoxide and water was studied occurring in an aerosol medium rich in methanol. This environment is plausible for the primitive and prebiotic Earth atmosphere. The chemical environment is expressed in terms of dielectric constant (ε) and the chemical system was modeled employing the polarizable continuum model (PCM). The main results were acquired from calculations employing the M06-2X density functional for the electronic structure calculations and the canonical variational theory with small curvature tunneling for the chemical kinetic calculations. The rise of ε affects both the thermochemistry and the kinetics of the reaction, increasing the barrier height and decreasing the rate constant for the reaction occurring at room temperature. For example, the rate constant at 300 K is 5-10× 10- 53 cm3 ⋅molecule- 1 ⋅s- 1 for low dielectric constant (ε < 3) and around 2-4× 10- 53 cm3 ⋅molecule- 1 ⋅s- 1 for ε between 7 and 40. Our results indicate that the ε variation allows a fine tuning to the rate of the reaction.


Asunto(s)
Monóxido de Carbono/química , Metanol/química , Metanol/síntesis química , Modelos Químicos , Agua/química
15.
ACS Omega ; 4(18): 17843-17849, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31681892

RESUMEN

Few experimental studies on the CH + CO2 global reaction propose H, CO, and HCO as major products. However, the reaction mechanisms behind this process have not yet been elucidated. Moreover, some intriguing kinetic particularities were noticed in these previous investigations. The advanced theoretical study performed here shows that a CH insertion mechanism is capable of explaining all the experimental data available. Hence, the strong deviations from a traditional Arrhenius behavior ascribed to the rate-determining elementary reaction (the CH insertion step) account for the kinetic particularities observed experimentally. A change in the preferred product channel as temperatures increase (from HCO + CO to H + 2CO) is also predicted to occur due to the HCO decomposition, although the CH depletion rates in typical conditions are not affected by this additional step.

16.
J Mol Model ; 20(9): 2449, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25204585

RESUMEN

Sulfur-containing molecules have a significant impact on atmosphere and biosphere. In this work we studied, from the point of view of electronic structure and chemical kinetics methods, the elementary reactions between a methanethiol molecule and a sulfur atom leading to hydrogen abstraction C-S bond cleavage (CH(3)SH+S; R1:→ CH(3)S+SH; R2: → CH(2)SH+SH; R3:→ CH(3)+HS(2)). The geometrical structures of the reactants, products, and saddle points for the three reaction paths were optimized using the BB1K method with the aug-cc-pV(T+d)Z basis set. The thermochemical properties were improved using single point coupled-cluster (CCSD(T)) calculations on the BB1K geometries followed by extrapolation to the complete basis set (CBS) limit. This methodology was previously applied and has given accurate values of thermochemical and kinetics properties when compared to benchmark calculations and experimental data. For each reaction, the thermal rate constants were calculated using the improved canonical variational theory (ICVT) including the zero-curvature (ICVT/ZCT) and small-curvature (ICVT/SCT) tunneling corrections. For comparison, the overall ICVT/SCT reaction rate constant at 300 K obtained with single-point CCSD(T)/CBS calculations for the CH(3)SH+S reaction is approximately 1400 times lower than the isovalent CH(3)SH+O reaction, obtained with CVT/SCT. The reaction path involving the hydrogen abstraction from the thiol group is the most important reactive path in all temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA