Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 231(11): 2418-27, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26892496

RESUMEN

Neutrophil production and traffic in the body compartments is finely controlled, and the strong evidences support the role of CXCL12/CXCR4 pathway on neutrophil trafficking to and from the bone marrow (BM). We recently showed that the glucocorticoid-regulated protein, Annexin A1 (AnxA1) modulates neutrophil homeostasis and here we address the effects of AnxA1 on steady-state neutrophil maturation and trafficking. For this purpose, AnxA1(-/-) and Balb/C wild-type mice (WT) were donors of BM granulocytes and mesenchymal stem cells and blood neutrophils. In vivo treatments with the pharmacological AnxA1 mimetic peptide (Ac2-26) or the formyl peptide receptor (FPR) antagonist (Boc-2) were used to elucidate the pathway of AnxA1 action, and with the cytosolic glucocorticoid antagonist receptor RU 38486. Accelerated maturation of BM granulocytes was detected in AnxA1(-/-) and Boc2-treated WT mice, and was reversed by treatment with Ac2-26 in AnxA1(-/-) mice. AnxA1 and FPR2 were constitutively expressed in bone marrow granulocytes, and their expressions were reduced by treatment with RU38486. Higher numbers of CXCR4(+) neutrophils were detected in the circulation of AnxA1(-/-) or Boc2-treated WT mice, and values were rescued in Ac2-26-treated AnxA1(-/-) mice. Although circulating neutrophils of AnxA1(-/-) animals were CXCR4(+) , they presented reduced CXCL12-induced chemotaxis. Moreover, levels of CXCL12 were reduced in the bone marrow perfusate and in the mesenchymal stem cell supernatant from AnxA1(-/-) mice, and in vivo and in vitro CXCL12 expression was re-established after Ac2-26 treatment. Collectively, these data highlight AnxA1 as a novel determinant of neutrophil maturation and the mechanisms behind blood neutrophil homing to BM via the CXCL12/CXCR4 pathway. J. Cell. Physiol. 231: 2418-2427, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anexina A1/metabolismo , Diferenciación Celular , Quimiocina CXCL12/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Animales , Células de la Médula Ósea/metabolismo , Arterias Carótidas/citología , Recuento de Células , Quimiotaxis , Pulmón/irrigación sanguínea , Masculino , Ratones Endogámicos BALB C , Microcirculación , Modelos Biológicos , Receptores de Formil Péptido/metabolismo , Receptores de Interleucina-8B/sangre
2.
Front Med (Lausanne) ; 8: 652137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959626

RESUMEN

Atherosclerosis can be originated from the accumulation of modified cholesterol-rich lipoproteins in the arterial wall. The electronegative LDL, LDL(-), plays an important role in the pathogenesis of atherosclerosis once this cholesterol-rich lipoprotein can be internalized by macrophages, contributing to the formation of foam cells, and provoking an immune-inflammatory response. Herein, we engineered a nanoformulation containing highly pure surface-functionalized nanocapsules using a single-chain fragment variable (scFv) reactive to LDL(-) as a ligand and assessed whether it can affect the LDL(-) uptake by primary macrophages and the progression of atherosclerotic lesions in Ldlr -/- mice. The engineered and optimized scFv-anti-LDL(-)-MCMN-Zn nanoformulation is internalized by human and murine macrophages in vitro by different endocytosis mechanisms. Moreover, macrophages exhibited lower LDL(-) uptake and reduced mRNA and protein levels of IL1B and MCP1 induced by LDL(-) when treated with this new nanoformulation. In a mouse model of atherosclerosis employing Ldlr -/- mice, intravenous administration of scFv-anti-LDL(-)-MCMN-Zn nanoformulation inhibited atherosclerosis progression without affecting vascular permeability or inducing leukocytes-endothelium interactions. Together, these findings suggest that a scFv-anti-LDL(-)-MCMN-Zn nanoformulation holds promise to be used in future preventive and therapeutic strategies for atherosclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA