Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Exp Bot ; 74(1): 352-363, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36242765

RESUMEN

Ontogenic changes in soybean radiation use efficiency (RUE) have been attributed to variation in specific leaf nitrogen (SLN) based only on data collected during seed filling. We evaluated this hypothesis using data on leaf area, absorbed radiation (ARAD), aboveground dry matter (ADM), and plant nitrogen (N) concentration collected during the entire crop season from seven field experiments conducted in a stress-free environment. Each experiment included a full-N treatment that received ample N fertilizer and a zero-N treatment that relied on N fixation and soil N mineralization. We estimated RUE based on changes in ADM between sampling times and associated ARAD, accounting for changes in biomass composition. The RUE and SLN exhibited different seasonal patterns: a bell-shaped pattern with a peak around the beginning of seed filling, and a convex pattern followed by an abrupt decline during late seed filling, respectively. Changes in SLN explained the decline in RUE during seed filling but failed to predict changes in RUE in earlier stages and underestimated the maximum RUE observed during pod setting. Comparison between observed and simulated RUE using a process-based crop simulation model revealed similar discrepancies. The decoupling between RUE and SLN during early crop stages suggests that leaf N is above that needed to maximize crop growth but may play a role in storing N that can be used in later reproductive stages to meet the large seed N demand associated with high-yielding crops.


Asunto(s)
Glycine max , Nitrógeno , Biomasa , Semillas , Productos Agrícolas
2.
Theor Appl Genet ; 135(5): 1797-1810, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275252

RESUMEN

KEY MESSAGE: Software for high imputation accuracy in soybean was identified. Imputed dataset could significantly reduce the interval of genomic regions controlling traits, thus greatly improve the efficiency of candidate gene identification. Genotype imputation is a strategy to increase marker density of existing datasets without additional genotyping. We compared imputation performance of software BEAGLE 5.0, IMPUTE 5 and AlphaPlantImpute and tested software parameters that may help to improve imputation accuracy in soybean populations. Several factors including marker density, extent of linkage disequilibrium (LD), minor allele frequency (MAF), etc., were examined for their effects on imputation accuracy across different software. Our results showed that AlphaPlantImpute had a higher imputation accuracy than BEAGLE 5.0 or IMPUTE 5 tested in each soybean family, especially if the study progeny were genotyped with an extremely low number of markers. LD extent, MAF and reference panel size were positively correlated with imputation accuracy, a minimum number of 50 markers per chromosome and MAF of SNPs > 0.2 in soybean line were required to avoid a significant loss of imputation accuracy. Using the software, we imputed 5176 soybean lines in the soybean nested mapping population (NAM) with high-density markers of the 40 parents. The dataset containing 423,419 markers for 5176 lines and 40 parents was deposited at the Soybase. The imputed NAM dataset was further examined for the improvement of mapping quantitative trait loci (QTL) controlling soybean seed protein content. Most of the QTL identified were at identical or at similar position based on initial and imputed datasets; however, QTL intervals were greatly narrowed. The resulting genotypic dataset of NAM population will facilitate QTL mapping of traits and downstream applications. The information will also help to improve genotyping imputation accuracy in self-pollinated crops.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Frecuencia de los Genes , Genotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Glycine max/genética
3.
Plant Cell Environ ; 43(8): 1958-1972, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430922

RESUMEN

Nitrogen (N) supply can limit the yields of soybean [Glycine max (L.) Merr.] in highly productive environments. To explore the physiological mechanisms underlying this limitation, seasonal changes in N dynamics, aboveground dry matter (ADM) accumulation, leaf area index (LAI) and fraction of absorbed radiation (fAPAR) were compared in crops relying only on biological N2 fixation and available soil N (zero-N treatment) versus crops receiving N fertilizer (full-N treatment). Experiments were conducted in seven high-yield environments without water limitation, where crops received optimal management. In the zero-N treatment, biological N2 fixation was not sufficient to meet the N demand of the growing crop from early in the season up to beginning of seed filling. As a result, crop LAI, growth, N accumulation, radiation-use efficiency and fAPAR were consistently higher in the full-N than in the zero-N treatment, leading to improved seed set and yield. Similarly, plants in the full-N treatment had heavier seeds with higher N concentration because of greater N mobilization from vegetative organs to seeds. Future yield gains in high-yield soybean production systems will require an increase in biological N2 fixation, greater supply of N from soil or fertilizer, or alleviation of the trade-off between these two sources of N in order to meet the plant demand.


Asunto(s)
Glycine max/crecimiento & desarrollo , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Semillas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Fertilizantes , Nebraska , Hojas de la Planta/fisiología , Estaciones del Año , Semillas/crecimiento & desarrollo , Glycine max/fisiología , Simbiosis
5.
Plant Cell ; 26(7): 2831-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005919

RESUMEN

Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean.


Asunto(s)
Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Proteínas de Dominio MADS/genética , Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Sitios Genéticos , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Glycine max/crecimiento & desarrollo
6.
Theor Appl Genet ; 130(11): 2315-2326, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28795235

RESUMEN

KEY MESSAGE: Evaluation of seed protein alleles in soybean populations showed that an increase in protein concentration is generally associated with a decrease in oil concentration and yield. Soybean [Glycine max (L.) Merrill] meal is one of the most important plant-based protein sources in the world. Developing cultivars high in seed protein concentration and seed yield is a difficult task because the traits have an inverse relationship. Over two decades ago, a protein quantitative trait loci (QTL) was mapped on chromosome (chr) 20, and this QTL has been mapped to the same position in several studies and given the confirmed QTL designation cqSeed protein-003. In addition, the wp allele on chr 2, which confers pink flower color, has also been associated with increased protein concentration. The objective of our study was to evaluate the effect of cqSeed protein-003 and the wp locus on seed composition and agronomic traits in elite soybean backgrounds adapted to the Midwestern USA. Segregating populations of isogenic lines were developed to test the wp allele and the chr 20 high protein QTL alleles from Danbaekkong (PI619083) and Glycine soja PI468916 at cqSeed protein-003. An increase in protein concentration and decrease in yield were generally coupled with the high protein alleles at cqSeed protein-003 across populations, whereas the effects of wp on protein concentration and yield were variable. These results not only demonstrate the difficulty in developing cultivars with increased protein and yield but also provide information for breeding programs seeking to improve seed composition and agronomic traits simultaneously.


Asunto(s)
Glycine max/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/química , Alelos , Cruzamientos Genéticos , Marcadores Genéticos , Fitomejoramiento , Sitios de Carácter Cuantitativo , Semillas/genética
7.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20075913

RESUMEN

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Asunto(s)
Genoma de Planta/genética , Genómica , Glycine max/genética , Poliploidía , Arabidopsis/genética , Cruzamiento , Cromosomas de las Plantas/genética , Evolución Molecular , Duplicación de Gen , Genes Duplicados/genética , Genes de Plantas/genética , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Nodulación de la Raíz de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Aceite de Soja/biosíntesis , Sintenía/genética , Factores de Transcripción/genética
8.
BMC Genomics ; 15: 1, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24382143

RESUMEN

BACKGROUND: Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. RESULTS: A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. CONCLUSIONS: This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta , Glycine max/genética , Aceites/metabolismo , Cromosomas de las Plantas/metabolismo , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Aceites/química , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/química , Semillas/genética , Semillas/metabolismo , Glycine max/química
9.
Planta ; 237(1): 55-64, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22983672

RESUMEN

The constitutive and drought-induced activities of the Arabidopsis thaliana RD29A and RD29B promoters were monitored in soybean (Glycine max (L.) Merr.] via fusions with the visual marker gene ß-glucuronidase (GUS). Physiological responses of soybean plants were monitored over 9 days of water deprivation under greenhouse conditions. Data were used to select appropriate time points to monitor the activities of the respective promoter elements. Qualitative and quantitative assays for GUS expression were conducted in root and leaf tissues, from plants under well-watered and dry-down conditions. Both RD29A and RD29B promoters were significantly activated in soybean plants subjected to dry-down conditions. However, a low level of constitutive promoter activity was also observed in both root and leaves of plants under well-watered conditions. GUS expression was notably higher in roots than in leaves. These observations suggest that the respective drought-responsive regulatory elements present in the RD29X promoters may be useful in controlling targeted transgenes to mitigate abiotic stress in soybean, provided the transgene under control of these promoters does not invoke agronomic penalties with leaky expression when no abiotic stress is imposed.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glycine max/genética , Regiones Promotoras Genéticas/genética , Agua/farmacología , Southern Blotting , Sequías , Fluorometría , Glucuronidasa/genética , Glucuronidasa/metabolismo , Histocitoquímica , Plantas Modificadas Genéticamente , Glycine max/metabolismo
10.
Proc Natl Acad Sci U S A ; 107(19): 8563-8, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20421496

RESUMEN

Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, whereas Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1/Dt1) and determinate (dt1/dt1) genotypes, when mated, produce progeny that segregate in a monogenic pattern. Here, we show evidence that Dt1 is a homolog (designated as GmTfl1) of Arabidopsis terminal flower 1 (TFL1), a regulatory gene encoding a signaling protein of shoot meristems. The transition from indeterminate to determinate phenotypes in soybean is associated with independent human selections of four distinct single-nucleotide substitutions in the GmTfl1 gene, each of which led to a single amino acid change. Genetic diversity of a minicore collection of Chinese soybean landraces assessed by simple sequence repeat (SSR) markers and allelic variation at the GmTfl1 locus suggest that human selection for determinacy took place at early stages of landrace radiation. The GmTfl1 allele introduced into a determinate-type (tfl1/tfl1) Arabidopsis mutants fully restored the wild-type (TFL1/TFL1) phenotype, but the Gmtfl1 allele in tfl1/tfl1 mutants did not result in apparent phenotypic change. These observations indicate that GmTfl1 complements the functions of TFL1 in Arabidopsis. However, the GmTfl1 homeolog, despite its more recent divergence from GmTfl1 than from Arabidopsis TFL1, appears to be sub- or neo-functionalized, as revealed by the differential expression of the two genes at multiple plant developmental stages and by allelic analysis at both loci.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Selección Genética , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Productos Agrícolas/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Marcadores Genéticos , Variación Genética , Datos de Secuencia Molecular , Mutación/genética , Homología de Secuencia de Ácido Nucleico , Glycine max/genética , Factores de Tiempo
11.
Science ; 379(6634): eade8506, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821665

RESUMEN

De Souza et al. (Research Articles, 19 Aug 2022, adc9831) recently claimed major soybean yield increases resulting from transformation of the nonphotochemical quenching mechanism of photosynthesis. However, there is little basis for the premise that such a transformation would result in yield increase. The field experiment was flawed and does not provide evidence for increases in crop yield.


Asunto(s)
Productos Agrícolas , Glycine max , Fotosíntesis , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Glycine max/genética , Glycine max/fisiología
12.
Plant Genome ; 16(1): e20308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744727

RESUMEN

Soybean is grown primarily for the protein and oil extracted from its seed and its value is influenced by these components. The objective of this study was to map marker-trait associations (MTAs) for the concentration of seed protein, oil, and meal protein using the soybean nested association mapping (SoyNAM) population. The composition traits were evaluated on seed harvested from over 5000 inbred lines of the SoyNAM population grown in 10 field locations across 3 years. Estimated heritabilities were at least 0.85 for all three traits. The genotyping of lines with single nucleotide polymorphism markers resulted in the identification of 107 MTAs for the three traits. When MTAs for the three traits that mapped within 5 cM intervals were binned together, the MTAs were mapped to 64 intervals on 19 of the 20 soybean chromosomes. The majority of the MTA effects were small and of the 107 MTAs, 37 were for protein content, 39 for meal protein, and 31 for oil content. For cases where a protein and oil MTAs mapped to the same interval, most (94%) significant effects were opposite for the two traits, consistent with the negative correlation between these traits. A coexpression analysis identified candidate genes linked to MTAs and 18 candidate genes were identified. The large number of small effect MTAs for the composition traits suggest that genomic prediction would be more effective in improving these traits than marker-assisted selection.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Mapeo Cromosómico/métodos , Genoma de Planta , Semillas/genética
13.
Genetics ; 221(2)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35451475

RESUMEN

Photosynthesis is a key target to improve crop production in many species including soybean [Glycine max (L.) Merr.]. A challenge is that phenotyping photosynthetic traits by traditional approaches is slow and destructive. There is proof-of-concept for leaf hyperspectral reflectance as a rapid method to model photosynthetic traits. However, the crucial step of demonstrating that hyperspectral approaches can be used to advance understanding of the genetic architecture of photosynthetic traits is untested. To address this challenge, we used full-range (500-2,400 nm) leaf reflectance spectroscopy to build partial least squares regression models to estimate leaf traits, including the rate-limiting processes of photosynthesis, maximum Rubisco carboxylation rate, and maximum electron transport. In total, 11 models were produced from a diverse population of soybean sampled over multiple field seasons to estimate photosynthetic parameters, chlorophyll content, leaf carbon and leaf nitrogen percentage, and specific leaf area (with R2 from 0.56 to 0.96 and root mean square error approximately <10% of the range of calibration data). We explore the utility of these models by applying them to the soybean nested association mapping population, which showed variability in photosynthetic and leaf traits. Genetic mapping provided insights into the underlying genetic architecture of photosynthetic traits and potential improvement in soybean. Notably, the maximum Rubisco carboxylation rate mapped to a region of chromosome 19 containing genes encoding multiple small subunits of Rubisco. We also mapped the maximum electron transport rate to a region of chromosome 10 containing a fructose 1,6-bisphosphatase gene, encoding an important enzyme in the regeneration of ribulose 1,5-bisphosphate and the sucrose biosynthetic pathway. The estimated rate-limiting steps of photosynthesis were low or negatively correlated with yield suggesting that these traits are not influenced by the same genetic mechanisms and are not limiting yield in the soybean NAM population. Leaf carbon percentage, leaf nitrogen percentage, and specific leaf area showed strong correlations with yield and may be of interest in breeding programs as a proxy for yield. This work is among the first to use hyperspectral reflectance to model and map the genetic architecture of the rate-limiting steps of photosynthesis.


Asunto(s)
Glycine max , Ribulosa-Bifosfato Carboxilasa , Carbono , Nitrógeno/metabolismo , Fotosíntesis/genética , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Glycine max/genética
14.
Genome ; 54(1): 10-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21217801

RESUMEN

Studies have indicated that exon and intron size and intergenic distance are correlated with gene expression levels and expression breadth. Previous reports on these correlations in plants and animals have been conflicting. In this study, next-generation sequence data, which has been shown to be more sensitive than previous expression profiling technologies, were generated and analyzed from 14 tissues. Our results revealed a novel dichotomy. At the low expression level, an increase in expression breadth correlated with an increase in transcript size because of an increase in the number of exons and introns. No significant changes in intron or exon sizes were noted. Conversely, genes expressed at the intermediate to high expression levels displayed a decrease in transcript size as their expression breadth increased. This was due to smaller exons, with no significant change in the number of exons. Taking advantage of the known gene space of soybean, we evaluated the positioning of genes and found significant clustering of similarly expressed genes. Identifying the correlations between the physical parameters of individual genes could lead to uncovering the role of regulation owing to nucleotide composition, which might have potential impacts in discerning the role of the noncoding regions.


Asunto(s)
Exones/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glycine max/genética , Intrones/genética , Animales , ADN Intergénico/genética , Perfilación de la Expresión Génica
15.
Sci Rep ; 11(1): 17879, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504206

RESUMEN

Rising global population and climate change realities dictate that agricultural productivity must be accelerated. Results from current traditional research approaches are difficult to extrapolate to all possible fields because they are dependent on specific soil types, weather conditions, and background management combinations that are not applicable nor translatable to all farms. A method that accurately evaluates the effectiveness of infinite cropping system interactions (involving multiple management practices) to increase maize and soybean yield across the US does not exist. Here, we utilize extensive databases and artificial intelligence algorithms and show that complex interactions, which cannot be evaluated in replicated trials, are associated with large crop yield variability and thus, potential for substantial yield increases. Our approach can accelerate agricultural research, identify sustainable practices, and help overcome future food demands.

16.
BMC Genomics ; 11: 38, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20078886

RESUMEN

BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. RESULTS: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. CONCLUSION: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8x whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.


Asunto(s)
ADN de Plantas/análisis , Genoma de Planta , Glycine max/química , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico , ADN de Plantas/genética , Bases de Datos de Ácidos Nucleicos , Glycine max/genética
17.
BMC Plant Biol ; 10: 160, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20687943

RESUMEN

BACKGROUND: Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation. RESULTS: The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome. CONCLUSIONS: This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/metabolismo , Análisis por Conglomerados , MicroARNs/genética , ARN Mensajero/genética , ARN de Planta/genética , Análisis de Secuencia de ARN
18.
BMC Plant Biol ; 10: 41, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20199683

RESUMEN

BACKGROUND: The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. RESULTS: A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix Soy GeneChip and high-throughput Illumina whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. CONCLUSIONS: This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome.


Asunto(s)
Genómica/métodos , Glycine max/genética , Sitios de Carácter Cuantitativo , Proteínas de Almacenamiento de Semillas/genética , ADN de Plantas/genética , Perfilación de la Expresión Génica , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo Físico de Cromosoma , Aceites de Plantas/análisis , Polimorfismo Genético , Semillas/genética , Análisis de Secuencia de ADN
19.
Sci Rep ; 9(1): 2800, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808953

RESUMEN

Global crop demand is expected to increase by 60-110% by 2050. Climate change has already affected crop yields in some countries, and these effects are expected to continue. Identification of weather-related yield-limiting conditions and development of strategies for agricultural adaptation to climate change is essential to mitigate food security concerns. Here we used machine learning on US soybean yield data, collected from cultivar trials conducted in 27 states from 2007 to 2016, to examine crop sensitivity to varying in-season weather conditions. We identified the month-specific negative effect of drought via increased water vapor pressure deficit. Excluding Texas and Mississippi, where later sowing increased yield, sowing 12 days earlier than what was practiced during this decade across the US would have resulted in 10% greater total yield and a cumulative monetary gain of ca. US$9 billion. Our data show the substantial nation- and region-specific yield and monetary effects of adjusting sowing timing and highlight the importance of continuously quantifying and adapting to climate change. The magnitude of impact estimated in our study suggest that policy makers (e.g., federal crop insurance) and laggards (farmers that are slow to adopt) that fail to acknowledge and adapt to climate change will impact the national food security and economy of the US.


Asunto(s)
Glycine max/crecimiento & desarrollo , Agricultura , Cambio Climático , Sequías , Estaciones del Año , Estados Unidos
20.
Genetics ; 175(4): 1937-44, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17287533

RESUMEN

Prospects for utilizing whole-genome association analysis in autogamous plant populations appear promising due to the reported high levels of linkage disequilibrium (LD). To determine the optimal strategies for implementing association analysis in soybean (Glycine max L. Merr.), we analyzed the structure of LD in three regions of the genome varying in length from 336 to 574 kb. This analysis was conducted in four distinct groups of soybean germplasm: 26 accessions of the wild ancestor of soybean (Glycine soja Seib. et Zucc.); 52 Asian G. max Landraces, the immediate results of domestication from G. soja; 17 Asian Landrace introductions that became the ancestors of North American (N. Am.) cultivars, and 25 Elite Cultivars from N. Am. In G. soja, LD did not extend past 100 kb; however, in the three cultivated G. max groups, LD extended from 90 to 574 kb, likely due to the impacts of domestication and increased self-fertilization. The three genomic regions were highly variable relative to the extent of LD within the three cultivated soybean populations. G. soja appears to be ideal for fine mapping of genes, but due to the highly variable levels of LD in the Landraces and the Elite Cultivars, whole-genome association analysis in soybean may be more difficult than first anticipated.


Asunto(s)
Glycine max/genética , Desequilibrio de Ligamiento , Alelos , Genética de Población , Genoma de Planta , Haplotipos , América del Norte , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA