Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Bone ; 29(1): 16-23, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11472886

RESUMEN

Regulated intercellular signaling is essential for the maintenance of bone mass. In recent work we described how osteoblasts and osteoclasts express functional receptors for the excitatory amino acid, glutamate, indicating that a signaling pathway analogous to synaptic neurotransmission exists in bone. Here, we show that osteoblasts also express the essential molecular framework for regulated glutamate exocytosis to occur as is present in presynaptic neurons. A combination of reverse transcription-polymerase chain reaction (RT-PCR) and northern and western blotting is used to show expression of the target membrane-SNARE (soluble NSF attachment protein receptor), proteins SNAP-25 and syntaxin 4 and the vesicular-SNARE protein VAMP (synaptobrevin), the minimum molecular requirements for core exocytotic complex formation. Immunofluorescent localizations reveal peripheral SNAP-25 expression on osteoblastic cells, particularly at intercellular contact sites, colocalizing with immunoreactive glutamate and the synaptic vesicle-specific protein, synapsin I. We also identify multiple accessory proteins associated with vesicle trafficking, including munc18, rSec8, DOC2, syntaxin 6, and synaptophysin, which have varied roles in regulated glutamate exocytosis. mRNA for the putative Ca(2+)-dependent regulators of vesicle recycling activity, synaptotagmin I (specialized for fast Ca(2+)-dependent exocytosis as seen in synaptic neurotransmission), and the GTP-binding protein Rab3A are also identified by northern blot analysis. Finally, we demonstrate that osteoblastic cells actively release glutamate in a differentiation-dependent manner. These data provide compelling evidence that osteoblasts are able to direct glutamate release by regulated vesicular exocytosis, mimicking presynaptic glutamatergic neurons, showing that a process with striking similarity to synaptic neurotransmission occurs in bone.


Asunto(s)
Ácido Glutámico/metabolismo , Osteoblastos/fisiología , Proteínas de Transporte Vesicular , Animales , Secuencia de Bases , Calcio/metabolismo , Células Cultivadas , Cartilla de ADN/genética , Exocitosis/fisiología , Humanos , Fusión de Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas SNARE , Transducción de Señal , Proteína 25 Asociada a Sinaptosomas
2.
Leukemia ; 28(5): 1081-91, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24166297

RESUMEN

Through a targeted knockdown (KD) screen of chromatin regulatory genes, we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic cofactors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD-induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34(+) HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD-induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore, EPC1 and EPC2 are components of a complex that directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Leucemia/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Células Madre Neoplásicas/patología , Oncogenes , Proteínas Represoras/fisiología , Animales , Apoptosis , Proteínas Cromosómicas no Histona/genética , Citometría de Flujo , N-Metiltransferasa de Histona-Lisina , Humanos , Leucemia/genética , Leucemia/metabolismo , Ratones , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética
3.
Cell Death Dis ; 4: e573, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23559008

RESUMEN

Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética , Acetilación , Enfermedad Aguda , Animales , Apoptosis/genética , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA