Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 28(21): 4669-4676, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037307

RESUMEN

PURPOSE: To assess the contributions of circulating metabolites for improving upon the performance of the risk of ovarian malignancy algorithm (ROMA) for risk prediction of ovarian cancer among women with ovarian cysts. EXPERIMENTAL DESIGN: Metabolomic profiling was performed on an initial set of sera from 101 serous and nonserous ovarian cancer cases and 134 individuals with benign pelvic masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related metabolites [diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid] was developed for distinguishing early-stage ovarian cancer from BPM. The performance of the metabolite panel was evaluated in an independent set of sera from 118 ovarian cancer cases and 56 subjects with BPM. The contributions of the panel for improving upon the performance of ROMA were further assessed. RESULTS: A 7-marker metabolite panel (7MetP) developed in the training set yielded an AUC of 0.86 [95% confidence interval (CI): 0.76-0.95] for early-stage ovarian cancer in the independent test set. The 7MetP+ROMA model had an AUC of 0.93 (95% CI: 0.84-0.98) for early-stage ovarian cancer in the test set, which was improved compared with ROMA alone [0.91 (95% CI: 0.84-0.98); likelihood ratio test P: 0.03]. In the entire specimen set, the combined 7MetP+ROMA model yielded a higher positive predictive value (0.68 vs. 0.52; one-sided P < 0.001) with improved specificity (0.89 vs. 0.78; one-sided P < 0.001) for early-stage ovarian cancer compared with ROMA alone. CONCLUSIONS: A blood-based metabolite panel was developed that demonstrates independent predictive ability and complements ROMA for distinguishing early-stage ovarian cancer from benign disease to better inform clinical decision making.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Femenino , Humanos , Antígeno Ca-125 , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP , Proteínas/metabolismo , Carcinoma Epitelial de Ovario , Neoplasias Ováricas/patología , Biomarcadores de Tumor , Algoritmos
2.
Front Artif Intell ; 5: 876100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034598

RESUMEN

There is a need to identify biomarkers predictive of response to neoadjuvant chemotherapy (NACT) in triple-negative breast cancer (TNBC). We previously obtained evidence that a polyamine signature in the blood is associated with TNBC development and progression. In this study, we evaluated whether plasma polyamines and other metabolites may identify TNBC patients who are less likely to respond to NACT. Pre-treatment plasma levels of acetylated polyamines were elevated in TNBC patients that had moderate to extensive tumor burden (RCB-II/III) following NACT compared to those that achieved a complete pathological response (pCR/RCB-0) or had minimal residual disease (RCB-I). We further applied artificial intelligence to comprehensive metabolic profiles to identify additional metabolites associated with treatment response. Using a deep learning model (DLM), a metabolite panel consisting of two polyamines as well as nine additional metabolites was developed for improved prediction of RCB-II/III. The DLM has potential clinical value for identifying TNBC patients who are unlikely to respond to NACT and who may benefit from other treatment modalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA