Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 135(1): 95-113, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29116375

RESUMEN

N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.


Asunto(s)
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/terapia , Acetiltransferasas/metabolismo , Amidohidrolasas/administración & dosificación , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagen , Enfermedad de Canavan/patología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Terapia Genética , Humanos , Masculino , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fenotipo , ARN Mensajero/metabolismo
2.
Neurobiol Dis ; 97(Pt A): 24-35, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816769

RESUMEN

BACKGROUND: The recently diagnosed leukodystrophy Hypomyelination with Brain stem and Spinal cord involvement and Leg spasticity (HBSL) is caused by mutations of the cytoplasmic aspartyl-tRNA synthetase geneDARS. The physiological role of DARS in translation is to accurately pair aspartate with its cognate tRNA. Clinically, HBSL subjects show a distinct pattern of hypomyelination and develop progressive leg spasticity, variable cognitive impairment and epilepsy. To elucidate the underlying pathomechanism, we comprehensively assessed endogenous DARS expression in mice. Additionally, aiming at creating the first mammalian HBSL model, we genetically engineered and phenotyped mutant mice with a targetedDarslocus. RESULTS: DARS, although expressed in all organs, shows a distinct expression pattern in the adult brain with little immunoreactivity in macroglia but enrichment in neuronal subpopulations of the hippocampus, cerebellum, and cortex. Within neurons, DARS is mainly located in the cell soma where it co-localizes with other components of the translation machinery. Intriguingly, DARS is also present along neurites and at synapses, where it potentially contributes to local protein synthesis.Dars-null mice are not viable and die before embryonic day 11. Heterozygous mice with only one functionalDarsallele display substantially reduced DARS levels in the brain; yet these mutants show no gross abnormalities, including unchanged motor performance. However, we detected reduced pre-pulse inhibition of the acoustic startle response indicating dysfunction of attentional processing inDars+/-mice. CONCLUSIONS: Our results, for the first time, show an in-depth characterization of the DARS tissue distribution in mice, revealing surprisingly little uniformity across brain regions or between the major neural cell types. The complete loss of DARS function is not tolerated in mice suggesting that the identified HBSL mutations in humans retain some residual enzyme activity. The mild phenotype of heterozygousDars-null carriers indicates that even partial restoration of DARS levels would be therapeutically relevant. Despite the fact that they do not resemble the full spectrum of clinical symptoms, the robust pre-pulse inhibition phenotype ofDars+/-mice will be instrumental for future preclinical therapeutic efficacy studies. In summary, our data is an important contribution to a better understanding of DARS function and HBSL pathology.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/enzimología , Animales , Aspartato-ARNt Ligasa/genética , Astrocitos/enzimología , Astrocitos/patología , Atención/fisiología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/enzimología , Neuronas/patología , Oligodendroglía/enzimología , Oligodendroglía/patología , Fenotipo , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Sinaptosomas/enzimología , Proteína de Unión al GTP ran/metabolismo
3.
Front Mol Neurosci ; 9: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941604

RESUMEN

Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene expression (>90%) in vivo. Moreover, cy5-MAG2.2-GFP delivery to the neonate CNS resulted in selective GFP expression in oligodendrocytes for at least 8 months. Broadly, the characterization of the extremely short yet oligodendrocyte-specific human MAG promoter may facilitate modeling neurological diseases caused by oligodendrocyte pathology and has translational relevance for leukodystrophy gene therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA