Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259775

RESUMEN

We present a new integrated experimental and modeling effort that assesses the intrinsic sensitivity of energetic materials based on their reaction rates. The High Explosive Initiation Time (HEIT) experiment has been developed to provide a rapid assessment of the high-temperature reaction kinetics for the chemical decomposition of explosive materials. This effort is supported theoretically by quantum molecular dynamics (QMD) simulations that depict how different explosives can have vastly different adiabatic induction times at the same temperature. In this work, the ranking of explosive initiation properties between the HEIT experiment and QMD simulations is identical for six different energetic materials, even though they contain a variety of functional groups. We have also determined that the Arrhenius kinetics obtained by QMD simulations for homogeneous explosions connect remarkably well with those obtained from much longer duration one-dimensional time-to-explosion (ODTX) measurements. Kinetic Monte Carlo simulations have been developed to model the coupled heat transport and chemistry of the HEIT experiment to explicitly connect the experimental results with the Arrhenius rates for homogeneous explosions. These results confirm that ignition in the HEIT experiment is heterogeneous, where reactions start at the needle wall and propagate inward at a rate controlled by the thermal diffusivity and energy release. Overall, this work provides the first cohesive experimental and first-principles modeling effort to assess reaction kinetics of explosive chemical decomposition in the subshock regime and will be useful in predictive models needed for safety assessments.

2.
Inorg Chem ; 61(5): 2391-2401, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35073063

RESUMEN

Metal-ligand cooperativity (MLC), a phenomenon that leverages reactive ligands to promote synergistic reactions with metals, has proven to be a powerful approach to achieving new and unprecedented chemical transformations with metal complexes. While many examples of MLC are known with a wide range of substrates, experimentally quantifying how ligand modifications affect MLC binding strength remains a challenge. Here we describe how cyclic voltammetry (CV) was used to quantify differences in MLC binding strength in a series of square-pyramidal Ru complexes. This method relies on using multifunctional ligands (those capable of both MLC and ligand-centered redox activity) as electrochemical reporters of MLC binding strength. The synthesis and characterization of Ru complexes with three different redox-active tetradentate ligands and two different ancillary phosphines (PPh3 and PCy3) are described. Titration CV studies conducted using BH3·THF with BH3 as a model MLC substrate allowed ΔGMLC to be quantified for each complex. Compared to our base triaryl ligand, increasing π conjugation in the backbone of the redox-active ligand enhanced MLC binding, whereas increasing π conjugation in the flanking groups decreased the MLC binding strength. Structures and spectroscopic data collected for the isolated MLC complexes are also described along with supporting DFT calculations that were used to illuminate electronic factors that likely account for the observed differences in the MLC binding strength. These results demonstrate how redox-active ligands and CV can be used to quantify subtle differences in the MLC binding strength across a series of structurally related complexes with different ligand modifications.

3.
Inorg Chem ; 59(15): 10845-10853, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32639726

RESUMEN

Metal-ligand cooperativity (MLC) relies on chemically reactive ligands to assist metals with small-molecule binding and activation, and it has facilitated unprecedented examples of catalysis with metal complexes. Despite growing interest in combining ligand-centered chemical and redox reactions for chemical transformations, there are few studies demonstrating how chemically engaging redox active ligands in MLC affects their electrochemical properties when bound to metals. Here we report stepwise changes in the redox activity of model Ru complexes as zero, one, and two BH3 molecules undergo MLC binding with a triaryl noninnocent N2S2 ligand derived from o-phenylenediamine (L1). A similar series of Ru complexes with a diaryl N2S2 ligand with ethylene substituted in place of phenylene (L2) is also described to evaluate the influence of the o-phenylenediamine subunit on redox activity and MLC. Cyclic voltammetry (CV) studies and density functional theory (DFT) calculations show that MLC attenuates ligand-centered redox activity in both series of complexes, but electron transfer is still achieved when only one of the two redox-active sites on the ligands is chemically engaged. The results demonstrate how incorporating more than one multifunctional reactive site could be an effective strategy for maintaining redox noninnocence in ligands that are also chemically reactive and competent for MLC.

4.
Inorg Chem ; 58(19): 12756-12774, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31490065

RESUMEN

The continued development of redox-active ligands requires an understanding as to how ligand modifications and related factors affect the locus of redox activity and spin density in metal complexes. Here we describe the synthesis, characterization, and electronic structure of nickel complexes containing triaryl NNNN (1) and SNNS (2) ligands derived from o-phenylenediamine. The tetradentate ligands in 1 and 2 were investigated and compared to those in metal complexes with compositionally similar ligands to determine how ligand-centered redox properties change when redox-active flanking groups are replaced with redox-innocent NMe2 or SMe. A derivative of 2 in which the phenylene backbone was replaced with ethylene (3) was also prepared to interrogate the importance of o-phenylenediamine for ligand-centered redox activity. Cyclic voltammograms collected for 1 and 2 revealed two fully reversible ligand-centered redox events. Remarkably, several quasi-reversible ligand-centered redox waves were also observed for 3 despite the absence of the o-phenylenediamine subunit. Oxidizing 1 and 2 with silver salts containing different counteranions (BF4-, OTf-, NTf2-) allowed the electrochemically generated complexes to be analyzed as a function of different oxidation states using single-crystal X-ray diffraction (XRD), EPR spectroscopy, and S K-edge X-ray absorption spectroscopy. The experimental data are corroborated by DFT calculations, and together, they reveal how the location of unpaired spin density and electronic structure in singly and doubly oxidized salts of 1 and 2 varies depending on the coordinating ability of the counteranions and exogenous ligands such as pyridine.

5.
Angew Chem Int Ed Engl ; 58(36): 12451-12455, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31271502

RESUMEN

Bond distance is a common structural metric used to assess changes in metal-ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal-ligand covalency. Here we report ligand K-edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K-edge pre-edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M-P σ bonding and bond distance. Cl K-edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M-Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K-edge data for Ti complexes with a wider range of Ti-Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal-ligand covalency using bond distances from readily-available crystallographic data.

6.
Angew Chem Int Ed Engl ; 58(21): 6993-6998, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30901511

RESUMEN

Constraining σ3 -P compounds in nontrigonal, entatic geometries has proven to be an effective strategy for promoting biphilic oxidative addition reactions more typical of transition metals. Although qualitative descriptions of the impact of structure and symmetry on σ3 -P complexes have been proposed, electronic structure variations responsible for biphilic reactivity have yet to be elucidated experimentally. Reported here are P K-edge XANES data and complementary TDDFT calculations for a series of structurally modified P(N)3 complexes that both validate and quantify electronic structure variations proposed to give rise to biphilic reactions at phosphorus. These data are presented alongside experimentally referenced electronic structure calculations that reveal nontrigonal structures predicted to further enhance biphilic reactivity in σ3 -P ligands and catalysts.


Asunto(s)
Compuestos Organofosforados/química , Fósforo/química , Elementos de Transición/química , Catálisis , Ligandos , Modelos Moleculares , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
7.
ACS Omega ; 9(29): 32097-32106, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39072092

RESUMEN

Pentaerythritol tetranitrate (PETN) has been used extensively in commercial detonators and other explosive applications for many decades. Here, we show the results of a comprehensive 1.5 year aging study of PETN in commercial detonators, addressing batch-to-batch variations, surface area changes, and comparisons of aged loose powders side-by-side with identically aged detonators. Function time analysis of the aged detonators has also been provided and discussed in the context of powder aging. This large-scale, statistically relevant study addresses long-standing questions on PETN aging without the complications from making comparisons between multiple batches of material. We have evaluated the aging time required to reach the maximum measured amount of PETN coarsening and estimated an activation barrier of ∼123 kJ mol-1, which is higher than literature values reported by Gee et al. It is possible that this discrepancy is due to the fact that that this study cannot quantify the relative contributions of surface diffusion versus sublimation processes. At the lower temperatures of 50 and 60 °C, we assume that surface diffusion dominates over sublimation processes, even at longer aging times. At the higher temperature of 75 °C, we assume that both surface diffusion and sublimation contribute at the early time points, which are included in the Arrhenius analysis for coarsening.

8.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037303

RESUMEN

There are few techniques available for chemists to obtain time-to-explosion data with known temperature inputs at the early stages of the design and synthesis of new explosives. In the 1960s, a technique was developed to rapidly heat milligram-quantities of confined explosives to ∼1000 K on microsecond timescales. Wenograd [Trans. Faraday Soc. 57, 1612 (1961)] loaded explosives inside stainless steel hypodermic needles, connected them to a fireset and rapidly discharged a capacitor through the steel. He obtained the temperature by measuring the needle resistance in a Wheatstone bridge arrangement and the time to explosion from a needle rupture. However, owing to the narrow-gauge needles used in the original research, the experiment was only possible with melt-castable explosives; it was never replicated, and modern diagnostics are now available with advances beyond the 1960s. Here, we report the development of the High Explosives Initiation Time (HEIT) test, which utilizes a 250 J pulsed power system to heat the needles. This work extends the Wenograd approach by using optical diagnostics, computational modeling, and advanced techniques to measure needle resistance and needle rupture. Preliminary rate information for pentaerythritol tetranitrate (PETN) will be presented.

9.
Chem Commun (Camb) ; 60(64): 8399-8402, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39028006

RESUMEN

Here we report the synthesis and characterization of diiron complexes containing triaryl N4 and N2S2 ligands derived from o-phenylenediamine. The complexes display significant differences in Fe-Fe distances and magnetic properties that depend on the identity of the flanking NMe2 and SMe donor groups.

10.
Chem Sci ; 14(25): 7044-7056, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37389270

RESUMEN

Determining the factors that influence and can help predict energetic material sensitivity has long been a challenge in the explosives community. Decades of literature reports identify a multitude of factors both chemical and physical that influence explosive sensitivity; however no unifying theory has been observed. Recent work by our team has demonstrated that the kinetics of "trigger linkages" (i.e., the weakest bonds in the energetic material) showed strong correlations with experimental drop hammer impact sensitivity. These correlations suggest that the simple kinetics of the first bonds to break are good indicators for the reactivity observed in simple handling sensitivity tests. Herein we report the synthesis of derivatives of the explosive pentaerythritol tetranitrate (PETN) in which one, two or three of the nitrate ester functional groups are substituted with an inert group. Experimental and computational studies show that explosive sensitivity correlates well with Q (heat of explosion), due to the change in the number of trigger linkages removed from the starting material. In addition, this correlation appears more significant than other observed chemical or physical effects imparted on the material by different inert functional groups, such as heat of formation, heat of explosion, heat capacity, oxygen balance, and the crystal structure of the material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA