Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nano Lett ; 17(7): 4083-4089, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28650174

RESUMEN

The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH)2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

2.
Langmuir ; 33(1): 125-129, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27960056

RESUMEN

Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping has opened the potential to discriminate between anionic and cationic surface species. However, a full chemical identification will also include the far more challenging situation of alike interfacial atoms (i.e., with the same net charge). Here we demonstrate the chemical identification capabilities of dynamic atomic force microscopy at solid-liquid interfaces by identifying Ca and Mg cations at the dolomite-water interface. Analyzing site-specific vertical positions of hydration layers and comparing them with molecular dynamics simulations unambiguously unravels the minute but decisive difference in ion hydration and provides a clear means for telling calcium and magnesium ions apart. Our work, thus, demonstrates the chemical identification capabilities of dynamic AFM at the solid-liquid interface.

3.
Nanotechnology ; 27(41): 415709, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27609045

RESUMEN

Frequency modulation atomic force microscopy (FM-AFM) experiments were performed on the calcite (10[Formula: see text]4) surface in pure water, and a detailed analysis was made of the 2D images at a variety of frequency setpoints. We observed eight different contrast patterns that reproducibly appeared in different experiments and with different measurement parameters. We then performed systematic free energy calculations of the same system using atomistic molecular dynamics to obtain an effective force field for the tip-surface interaction. By using this force field in a virtual AFM simulation we found that each experimental contrast could be reproduced in our simulations by changing the setpoint, regardless of the experimental parameters. This approach offers a generic method for understanding the wide variety of contrast patterns seen on the calcite surface in water, and is generally applicable to AFM imaging in liquids.

4.
Phys Chem Chem Phys ; 16(41): 22545-54, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25227553

RESUMEN

We have used ab initio molecular dynamics (AIMD) simulations to study the interaction of water with the NaCl surface. As expected, we find that water forms several ordered hydration layers, with the first hydration layer having water molecules aligned so that oxygen atoms are on average situated above Na sites. In an attempt to understand the dissolution of NaCl in water, we have then combined AIMD with constrained barrier searches, to calculate the dissolution energetics of Na(+) and Cl(-) ions from terraces, steps, corners and kinks of the (100) surface. We find that the barrier heights show a systematic reduction from the most stable flat terrace sites, through steps to the smallest barriers for corner and kink sites. Generally, the barriers for removal of Na(+) ions are slightly lower than for Cl(-) ions. Finally, we use our calculated barriers in a Kinetic Monte Carlo as a first order model of the dissolution process.

5.
Langmuir ; 29(7): 2207-16, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23339738

RESUMEN

Calcite is among the most abundant minerals on earth and plays a central role in many environmental and geochemical processes. Here we used amplitude modulation atomic force microscopy (AFM) operated in a particular regime to visualize single ions close to the (1014) surface of calcite in solution. The results were acquired at equilibrium, in aqueous solution containing different concentrations of NaCl, RbCl, and CaCl(2). The AFM images provide a direct and atomic-level picture of the different cations adsorbed preferentially at certain locations of the calcite-water interface. Highly ordered water layers at the calcite surface prevent the hydrated ions from directly interacting with calcite due to the energy penalty incurred by the necessary restructuring of the ions' solvation shells. Controlled removal of the adsorbed ions from the interface by the AFM tip provides indications about the stability of the adsorption site. The AFM results show the familiar "row pairing" of the carbonate oxygen atoms, with the adsorbed monovalent cations located adjacent to the most prominent oxygen atoms. The location of adsorbed cations near the surface appears better defined for monovalent ions than for Ca(2+), consistent with the idea that Ca(2+) ions remain further away from the surface of calcite due to their larger hydration shell. The precise distance between the different hydrated ions and the surface of calcite is quantified using MD simulation. The preferential adsorption sites found by MD as well as the ion residence times close to the surface support the AFM findings, with Na(+) ions dwelling substantially longer and closer to the calcite surface than Ca(2+). The results also bring new insights into the problem of the Stern and electrostatic double layer at the surface of calcite, showing that parameters such as the thickness of the Stern layer can be highly ion dependent.

6.
J Phys Chem Lett ; 12(33): 8039-8045, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34402624

RESUMEN

Calcite dissolution is initiated by the formation of a nanoscale etch pit followed by step edge propagation and hence strongly influenced by the interactions between surface diffusing ions and step edges. However, such atomic-scale dynamics are mostly inaccessible with current imaging tools. Here, we overcome this limitation by using our recent development of high-speed frequency modulation atomic force microscopy. By visualizing atomic-scale structural changes of the etch pits at the calcite surface in water, we found the existence of mobile and less-mobile surface adsorption layers (SALs) in the etch pits. We also found that some etch pits maintain their size for a long time without expansion, and their step edges are often associated with less-mobile SALs, suggesting their step stabilization effect.


Asunto(s)
Carbonato de Calcio/química , Microscopía de Fuerza Atómica/métodos , Nanoestructuras/química , Adsorción , Cristalografía , Estructura Molecular , Solubilidad , Propiedades de Superficie , Agua/química
7.
Int J Mol Sci ; 11(6): 2393-420, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20640160

RESUMEN

Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG) can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.


Asunto(s)
Lípidos de la Membrana/química , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Animales , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
8.
Nanoscale ; 12(24): 12856-12868, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32520063

RESUMEN

In this study, we have investigated the influence of the tip on the three-dimensional scanning force microscopy (3D-SFM) images of calcite-water interfaces by experiments and simulations. We calculated 3D force images by simulations with the solvent tip approximation (STA), Ca, CO3 and OH tip models. For all the 3D images, the z profiles at the surface Ca and CO3 sites alternately show oscillatory peaks corresponding to the hydration layers. However, the peak heights and spacings become larger when the mechanical stability of the tip becomes higher. For analyzing the xy slices of the 3D force images, we developed the extended STA (E-STA) model which allowed us to reveal the strong correlation between the hydration structure just under the tip and the atomic-scale force contrasts. Based on these understandings on the image features showing the strong tip dependence, we developed a method for objectively estimating the similarity between 3D force images. With this method, we compared the simulated images with the three experimentally obtained ones. Among them, two images showed a relatively high similarity with the image obtained by the simulation with the Ca or the CO3 tip model. Based on these agreements, we characterized the hydration structure and mechanical stability of the experimentally used tips. The understanding and methodology presented here should help us to derive accurate information on the tip and the interfacial structure from experimentally obtained 3D-SFM images.

9.
Beilstein J Nanotechnol ; 11: 891-898, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566439

RESUMEN

Calcite and magnesite are important mineral constituents of the earth's crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid-liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol - an organic molecule with a single hydroxy group - at the calcite and magnesite (10.4) surfaces by using high-resolution 3D AFM and molecular dynamics (MD) simulations. Within a single AFM data set we are able to resolve both the first laterally ordered solvation layer of ethanol on the calcite surface as well as the following solvation layers that show no lateral order. Our experimental results are in excellent agreement with MD simulations. The qualitative difference in the lateral order can be understood by the differing chemical environment: While the first layer adopts specific binding positions on the ionic carbonate surface, the second layer resides on top of the organic ethyl layer. A comparison of calcite and magnesite reveals a qualitatively similar ethanol arrangement on both carbonates, indicating the general nature of this finding.

10.
Nat Commun ; 9(1): 2099, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795263

RESUMEN

The original version of the Supplementary Information associated with this Article contained an error in Supplementary Figure 9e,f in which the y-axes were incorrectly labelled from '-40' to '40', rather than the correct '-400' to '400'. The HTML has been updated to include a corrected version of the Supplementary Information.

11.
Nat Commun ; 8(1): 2111, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235462

RESUMEN

Local hydration structures at the solid-liquid interface around boundary edges on heterostructures are key to an atomic-level understanding of various physical, chemical and biological processes. Recently, we succeeded in visualising atomic-scale three-dimensional hydration structures by using ultra-low noise frequency-modulation atomic force microscopy. However, the time-consuming three-dimensional-map measurements on uneven heterogeneous surfaces have not been achieved due to experimental difficulties, to the best of our knowledge. Here, we report the local hydration structures formed on a heterogeneously charged phyllosilicate surface using a recently established fast and nondestructive acquisition protocol. We discover intermediate regions formed at step edges of the charged surface. By combining with molecular dynamics simulations, we reveal that the distinct structural hydrations are hard to observe in these regions, unlike the charged surface regions, possibly due to the depletion of ions at the edges. Our methodology and findings could be crucial for the exploration of further functionalities.

12.
Sci Adv ; 3(5): e1603258, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508080

RESUMEN

The hydrogen atom-the smallest and most abundant atom-is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H-C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity.

13.
ACS Nano ; 11(8): 8122-8130, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28712296

RESUMEN

According to Hückel theory, an anti-aromatic molecule possessing (4n)π-electrons becomes unstable. Although the stabilization has been demonstrated by radialene-type structures-fusing aromatic rings to anti-aromatic rings-in solution, such molecules have never been studied at a single molecular level. Here, we synthesize a cyclobutadiene derivative, dibenzo[b,h]biphenylene, by an on-surface intramolecular reaction. With a combination of high-resolution atomic force microscopy and density functional theory calculations, we found that a radialene structure significantly reduces the anti-aromaticity of the cyclobutadiene core, extracting π-electrons, while the small four-membered cyclic structure keeps a high density of the total charge.

14.
Sci Rep ; 6: 21576, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26877225

RESUMEN

The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO3 severely affect calcite's (104) surface and its reactivity. Here we combine molecular dynamics (MD) simulations, X-ray reflectivity (XR) and in situ atomic force microscopy (AFM) to probe the calcite (104) - water interface in the presence of NaNO3. Simulations reveal density profiles of different ions near calcite's surface, with NO3(-) able to reach closer to the surface than CO3(2-) and in higher concentrations. Reflectivity measurements show a structural destabilisation of the (104) surfaces' topmost atomic layers in NaNO3 bearing solution, with distorted rotation angles of the carbonate groups and substantial displacement of the lattice ions. Nanoscale AFM results confirm the alteration of crystallographic characteristics, and the ability of dissolved NaNO3 to modify the structure of interfacial water was observed by AFM force spectroscopy. Our experiments and simulations consistently evidence a dramatic deterioration of the crystals' surface, with potentially important implications for geological and industrial processes.

15.
Nat Commun ; 7: 12711, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619070

RESUMEN

On-surface chemical reactions hold the potential for manufacturing nanoscale structures directly onto surfaces by linking carbon atoms in a single-step reaction. To fabricate more complex and functionalized structures, the control of the on-surface chemical reactions must be developed significantly. Here, we present a thermally controlled sequential three-step chemical transformation of a hydrocarbon molecule on a Cu(111) surface. With a combination of high-resolution atomic force microscopy and first-principles computations, we investigate the transformation process in step-by-step detail from the initial structure to the final product via two intermediate states. The results demonstrate that surfaces can be used as catalysing templates to obtain compounds, which cannot easily be synthesized by solution chemistry.

16.
Nat Commun ; 6: 8098, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26302943

RESUMEN

Boron is a unique element in terms of electron deficiency and Lewis acidity. Incorporation of boron atoms into an aromatic carbon framework offers a wide variety of functionality. However, the intrinsic instability of organoboron compounds against moisture and oxygen has delayed the development. Here, we present boron-doped graphene nanoribbons (B-GNRs) of widths of N=7, 14 and 21 by on-surface chemical reactions with an employed organoboron precursor. The location of the boron dopant is well defined in the centre of the B-GNR, corresponding to 4.8 atom%, as programmed. The chemical reactivity of B-GNRs is probed by the adsorption of nitric oxide (NO), which is most effectively trapped by the boron sites, demonstrating the Lewis acid character. Structural properties and the chemical nature of the NO-reacted B-GNR are determined by a combination of scanning tunnelling microscopy, high-resolution atomic force microscopy with a CO tip, and density functional and classical computations.

17.
Nat Commun ; 5: 4400, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25027990

RESUMEN

When immersed into water, most solids develop a surface charge, which is neutralized by an accumulation of dissolved counterions at the interface. Although the density distribution of counterions perpendicular to the interface obeys well-established theories, little is known about counterions' lateral organization at the surface of the solid. Here we show, by using atomic force microscopy and computer simulations, that single hydrated metal ions can spontaneously form ordered structures at the surface of homogeneous solids in aqueous solutions. The structures are laterally stabilized only by water molecules with no need for specific interactions between the surface and the ions. The mechanism, studied here for several systems, is controlled by the hydration landscape of both the surface and the adsorbed ions. The existence of discrete ion domains could play an important role in interfacial phenomena such as charge transfer, crystal growth, nanoscale self-assembly and colloidal stability.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011203, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20365360

RESUMEN

For understanding the behavior of a gas close to a channel wall it is important to model the gas-wall interactions as detailed as possible. When using molecular dynamics simulations these interactions can be modeled explicitly, but the computations are time consuming. Replacing the explicit wall with a wall model reduces the computational time but the same characteristics should still remain. Elaborate wall models, such as the Maxwell-Yamamoto model or the Cercignani-Lampis model need a phenomenological parameter (the accommodation coefficient) for the description of the gas-wall interaction as an input. Therefore, computing these accommodation coefficients in a reliable way is very important. In this paper, two systems (platinum walls with either argon or xenon gas confined between them) are investigated and are used for comparison of the accommodation coefficients for the wall models and the explicit molecular dynamics simulations. Velocity correlations between incoming and outgoing particles colliding with the wall have been used to compare explicit simulations and wall models even further. Furthermore, based on these velocity correlations, a method to compute the accommodation coefficients is presented, and these newly computed accommodation coefficients are used to show improved correlation behavior for the wall models.


Asunto(s)
Simulación de Dinámica Molecular , Algoritmos , Argón/química , Gases/química , Platino (Metal)/química , Procesos Estocásticos , Factores de Tiempo , Xenón/química
19.
Proc Natl Acad Sci U S A ; 103(13): 4882-7, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16551744

RESUMEN

Recently we predicted the 3D structure of the human beta2-adrenergic receptor (beta2AR) and of the binding site of several agonists and antagonists to beta2AR. These predictions (MembStruk and HierDock) included no explicit water and only a few lipid molecules. Here we include explicit H(2)O and an infinite lipid bilayer membrane in molecular dynamics (MD) simulations of three systems: apo-beta2AR, epinephrine-bound beta2AR, and butoxamine-bound beta2AR (epinephrine is an endogenous agonist, and butoxamine is a beta2AR selective antagonist). The predicted structures for apo-beta2AR and butoxamine-beta2AR are stable in MD, but in epinephrine-beta2AR, extracellular water trickles into the binding pocket to mediate hydrogen bonding between the catechol of epinephrine and Ser-204 on helix 5. The epinephrine-beta2AR structure shows dynamic flexibility with small, piston-like movements of helices 3 and 6 and transient interhelical hydrogen bonding between Ser-165 on transmembrane 4 and Ser-207 on transmembrane 5. These couplings and motions may play a role in protein activation. The apo-beta2AR shows less dynamic flexibility, whereas the antagonist-beta2AR structure is quite rigid. This MD validation of the structure predictions for G protein-coupled receptors in explicit lipid and water suggests that these methods can be trusted for studying the mechanism of activation and the design of subtype-specific agonists and antagonists.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Solventes/química , Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas de Receptores Adrenérgicos beta 2 , Apoproteínas/química , Apoproteínas/metabolismo , Transporte Biológico , Butoxamina/química , Butoxamina/metabolismo , Simulación por Computador , Epinefrina/química , Epinefrina/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA