Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Allergy ; 78(1): 121-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35726192

RESUMEN

BACKGROUND: Immune responses to N-glycan structures from allergens and parasites are often associated with pronounced, high affinity IgE reactivities. Cross-reactive carbohydrate determinants (CCDs) are constituted by modified N-glycan core structures and represent the most frequently recognized epitopes in allergic immune responses. Although recently accepted as potentially allergenic epitopes, the biological and clinical relevance as well as structural and functional characteristics of CCD-specific antibodies remain elusive. METHODS: In order to gain structural insights into the recognition of CCDs, two specific antibody fragments were isolated from a leporid immune repertoire library and converted into human/leporid IgE and IgG formats. The antibody formats were assessed by ELISA and surface plasmon resonance, structural and functional analyses were performed by X-ray crystallography, mediator release, and ELIFAB assays. RESULTS: The recombinant IgE exhibited highly specific interactions with different types of CCDs on numerous CCD-carrying glycoproteins. Crystal structures of two CCD-specific antibodies, one of which in complex with a CCD-derived disaccharide emphasize that mechanisms of core glycan epitope recognition are as specific as those governing protein epitope recognition. The rIgE triggered immediate cellular responses via FcεRI cross-linking and mediated facilitated antigen presentation by binding of IgE/antigen complexes to CD23, a process that also could be blocked by IgG of allergic patients. CONCLUSIONS: Our study provides evidence for the relevance of N-glycan recognition in TH 2 responses and corroborates that IgE and IgG antibodies to ubiquitous carbohydrate epitopes can be equivalent to those directed against proteinaceous epitopes with implications for diagnostic and immunotherapeutic concepts.


Asunto(s)
Hipersensibilidad , Inmunoglobulina E , Humanos , Polisacáridos , Hipersensibilidad/diagnóstico , Carbohidratos , Alérgenos , Epítopos , Inmunoglobulina G , Reacciones Cruzadas
2.
Protein Expr Purif ; 199: 106148, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35940518

RESUMEN

Minibodies (single-chain Fv-CH3) are fusion proteins of a single-chain variable fragment (scFv) to the human IgG1 CH3 domain. They exhibit superior properties as compared to whole antibodies due to their smaller size and less complex composition, and also as compared to scFvs due to the two antigen-binding domains, for immunotherapy and imaging of various carcinomas including breast cancer. In the current study, efficient production of the recombinant anti-MUC-1 minibody for its dominant format (VH-VL) was obtained in the periplasmic space of the Escherichia coliBL21 (DE3) expression system. The active recombinant protein was successfully purified from soluble fraction. Functional assays presented the in vitro targeting properties and specificity of the expressed anti-MUC-1 HL minibody in the MUC-1 positive cell lines compared to normal cell.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos de Cadena Única , Antígenos de Neoplasias/genética , Humanos , Inmunoterapia , Proteínas Recombinantes/química , Anticuerpos de Cadena Única/genética
3.
Allergy ; 76(8): 2383-2394, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33655520

RESUMEN

Until recently, glycan epitopes have not been documented by the WHO/IUIS Allergen Nomenclature Sub-Committee. This was in part due to scarce or incomplete information on these oligosaccharides, but also due to the widely held opinion that IgE to these epitopes had little or no relevance to allergic symptoms. Most IgE-binding glycans recognized up to 2008 were considered to be "classical" cross-reactive carbohydrate determinants (CCD) that occur in insects, some helminths and throughout the plant kingdom. Since 2008, the prevailing opinion on lack of clinical relevance of IgE-binding glycans has been subject to a reevaluation. This was because IgE specific for the mammalian disaccharide galactose-alpha-1,3-galactose (alpha-gal) was identified as a cause of delayed anaphylaxis to mammalian meat in the United States, an observation that has been confirmed by allergists in many parts of the world. Several experimental studies have shown that oligosaccharides with one or more terminal alpha-gal epitopes can be attached as a hapten to many different mammalian proteins or lipids. The classical CCDs also behave like haptens since they can be expressed on proteins from multiple species. This is the explanation for extensive in vitro cross-reactivity related to CCDs. Because of these developments, the Allergen Nomenclature Sub-Committee recently decided to include glycans as potentially allergenic epitopes in an adjunct section of its website (www.allergen.org). In this article, the features of the main glycan groups known to be involved in IgE recognition are revisited, and their characteristic structural, functional, and clinical features are discussed.


Asunto(s)
Alérgenos , Inmunoglobulina E , Animales , Carbohidratos , Reacciones Cruzadas , Epítopos , Humanos
4.
Chembiochem ; 21(13): 1923-1931, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194280

RESUMEN

Core fucosylation of N-glycans is catalyzed by fucosyltransferase 8 and is associated with various types of cancer. Most reported fucosyltransferase inhibitors contain non-drug-like features, such as charged groups. New starting points for the development of inhibitors of fucosyltransferase 8 using a fragment-based strategy are presented. Firstly, we discuss the potential of a new putative binding site of fucosyltransferase 8 that, according to a molecular dynamics (MD) simulation, is made accessible by a significant motion of the SH3 domain. This might enable the design of completely new inhibitor types for fucosyltransferase 8. Secondly, we have performed a docking study targeting the donor binding site of fucosyltransferase 8, and this yielded two fragments that were linked and trimmed in silico. The resulting ligand was synthesized. Saturation transfer difference (STD) NMR confirmed binding of the ligand featuring a pyrazole core that mimics the guanine moiety. This ligand represents the first low-molecular-weight compound for the development of inhibitors of fucosyltransferase 8 with drug-like properties.


Asunto(s)
Inhibidores Enzimáticos/química , Fucosiltransferasas/metabolismo , Regulación Alostérica , Sitios de Unión , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Fucosiltransferasas/antagonistas & inhibidores , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Dominios Homologos src
5.
Allergy ; 75(8): 1956-1965, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32037590

RESUMEN

BACKGROUND: IgE is the central antibody isotype in TH2-biased immunity and allergic diseases. The structure of intact IgE and the impact of IgE-targeting molecules on IgE however remain elusive. In order to obtain insights into IgE biology and the clinical impact, we aimed for structure determination of IgE and the complex of IgE with the anti-IgE antibody ligelizumab. METHODS: Structures of two distinct intact IgE with specificity for cross-reactive carbohydrate determinants and Der p 2 as well as complexes of ligelizumab-Fab with IgE and IgE Fc were assessed by negative stain electron microscopy and solution scattering. Inhibition of IgE binding and displacement of receptor-bound IgE were assessed using cellular assays, basophil activation testing and ELIFAB assays. RESULTS: Our data reveal that the investigated IgE molecules share an overall rigid conformation. In contrast to the IgE Fc fragment, the IgE Fc in intact IgE is significantly less asymmetrically bent. The proximal and the distal Fabs are rigidly tethered to the Fc. Binding of ligelizumab to IgE in a 2:1 stoichiometry induces an extended and twofold symmetrical conformation of IgE, which retains a rigid Fab-Fc architecture. Analyses of effector cell activation revealed that ligelizumab inhibits IgE binding without displacing receptor-bound IgE. Together with an interference of CD23 binding, the data underline a functional activity similar to omalizumab. CONCLUSIONS: Our data reveal the first structures of intact IgE suggesting that the IgE Fab is fixed relative to the Fc. Furthermore, we provide a structural rationale for the inhibitory mechanism of ligelizumab.


Asunto(s)
Inmunoglobulina E , Receptores de IgE , Anticuerpos Monoclonales Humanizados , Microscopía Electrónica , Omalizumab
6.
Curr Allergy Asthma Rep ; 20(9): 48, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32548726

RESUMEN

PURPOSE OF REVIEW: In Hymenoptera venom allergy, the research focus has moved from whole venoms to individual allergenic molecules. Api m 10 (icarapin) has been described as a major allergen of honeybee venom (HBV) with potentially high relevance for diagnostics and therapy of venom allergy. Here, we review recent studies on Api m 10 characteristics as well as its role in component-resolved diagnostics and potential implications for venom-specific immunotherapy (VIT). RECENT FINDINGS: Api m 10 is a major allergen of low abundance in HBV. It is an obviously unstable protein of unknown function that exhibits homologs in other insect species. Despite its low abundance in HBV, 35 to 72% of HBV-allergic patients show relevant sensitization to this allergen. Api m 10 is a marker allergen for HBV sensitization, which in many cases can help to identify primary sensitization to HBV and, hence, to discriminate between genuine sensitization and cross-reactivity. Moreover, Api m 10 might support personalized risk stratification in VIT, as dominant sensitization to Api m 10 has been identified as risk factor for treatment failure. This might be of particular importance since Api m 10 is strongly underrepresented in some therapeutic preparations commonly used for VIT. Although the role of Api m 10 in HBV allergy and tolerance induction during VIT is not fully understood, it certainly is a useful tool to unravel primary sensitization and individual sensitization profiles in component-resolved diagnostics (CRD). Moreover, a potential of Api m 10 to contribute to personalized treatment strategies in HBV allergy is emerging.


Asunto(s)
Alérgenos/uso terapéutico , Venenos de Artrópodos/uso terapéutico , Venenos de Abeja/uso terapéutico , Desensibilización Inmunológica/métodos , Himenópteros/patogenicidad , Mordeduras y Picaduras de Insectos/terapia , Animales , Venenos de Artrópodos/farmacología , Venenos de Abeja/farmacología , Humanos , Factores de Riesgo
7.
Plant J ; 91(3): 394-407, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28407380

RESUMEN

Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N-glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N-glycan patterns as documented using mass spectrometry and glycan-recognising antibodies, indicating successful identification of null mutations in the target glyco-genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3-fucosyltransferase (Lj3fuct) mutant completely lacked α1,3-core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N-glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N-acetylglucosaminyltransferase I, and α1,3-fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N-glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N-glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian-like N-glycosylation features.


Asunto(s)
Glicoproteínas/aislamiento & purificación , Lotus/genética , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Polisacáridos/metabolismo , Glicoproteínas/genética , Glicosilación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas de Plantas/genética
10.
J Allergy Clin Immunol ; 138(6): 1663-1671.e9, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27372568

RESUMEN

BACKGROUND: Component resolution recently identified distinct sensitization profiles in honey bee venom (HBV) allergy, some of which were dominated by specific IgE to Api m 3 and/or Api m 10, which have been reported to be underrepresented in therapeutic HBV preparations. OBJECTIVE: We performed a retrospective analysis of component-resolved sensitization profiles in HBV-allergic patients and association with treatment outcome. METHODS: HBV-allergic patients who had undergone controlled honey bee sting challenge after at least 6 months of HBV immunotherapy (n = 115) were included and classified as responder (n = 79) or treatment failure (n = 36) on the basis of absence or presence of systemic allergic reactions upon sting challenge. IgE reactivity to a panel of HBV allergens was analyzed in sera obtained before immunotherapy and before sting challenge. RESULTS: No differences were observed between responders and nonresponders regarding levels of IgE sensitization to Api m 1, Api m 2, Api m 3, and Api m 5. In contrast, Api m 10 specific IgE was moderately but significantly increased in nonresponders. Predominant Api m 10 sensitization (>50% of specific IgE to HBV) was the best discriminator (specificity, 95%; sensitivity, 25%) with an odds ratio of 8.444 (2.127-33.53; P = .0013) for treatment failure. Some but not all therapeutic HBV preparations displayed a lack of Api m 10, whereas Api m 1 and Api m 3 immunoreactivity was comparable to that of crude HBV. In line with this, significant Api m 10 sIgG4 induction was observed only in those patients who were treated with HBV in which Api m 10 was detectable. CONCLUSIONS: Component-resolved sensitization profiles in HBV allergy suggest predominant IgE sensitization to Api m 10 as a risk factor for treatment failure in HBV immunotherapy.


Asunto(s)
Alérgenos/uso terapéutico , Venenos de Abeja/uso terapéutico , Desensibilización Inmunológica/métodos , Hipersensibilidad/terapia , Adolescente , Adulto , Anciano , Alérgenos/inmunología , Venenos de Abeja/inmunología , Niño , Reacciones Cruzadas , Femenino , Humanos , Hipersensibilidad/inmunología , Inmunización , Inmunoglobulina E/metabolismo , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Insuficiencia del Tratamiento , Adulto Joven
11.
EMBO J ; 30(3): 606-16, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21217642

RESUMEN

Complement acts as a danger-sensing system in the innate immune system, and its activation initiates a strong inflammatory response and cleavage of the proteins C3 and C5 by proteolytic enzymes, the convertases. These contain a non-catalytic substrate contacting subunit (C3b or C4b) in complex with a protease subunit (Bb or C2a). We determined the crystal structures of the C3b homologue cobra venom factor (CVF) in complex with C5, and in complex with C5 and the inhibitor SSL7 at 4.3 Å resolution. The structures reveal a parallel two-point attachment between C5 and CVF, where the presence of SSL7 only slightly affects the C5-CVF interface, explaining the IgA dependence for SSL7-mediated inhibition of C5 cleavage. CVF functions as a relatively rigid binding scaffold inducing a conformational change in C5, which positions its cleavage site in proximity to the serine protease Bb. A general model for substrate recognition by the convertases is presented based on the C5-CVF and C3b-Bb-SCIN structures. Prior knowledge concerning interactions between the endogenous convertases and their substrates is rationalized by this model.


Asunto(s)
Convertasas de Complemento C3-C5/metabolismo , Complemento C5/metabolismo , Venenos Elapídicos/metabolismo , Exotoxinas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Convertasas de Complemento C3-C5/química , Complemento C5/química , Cristalografía , Venenos Elapídicos/química , Exotoxinas/química , Humanos , Complejos Multiproteicos/química
13.
J Allergy Clin Immunol ; 133(5): 1383-9, 1389.e1-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440283

RESUMEN

BACKGROUND: Detection of IgE to recombinant Hymenoptera venom allergens has been suggested to improve the diagnostic precision in Hymenoptera venom allergy. However, the frequency of sensitization to the only available recombinant honeybee venom (HBV) allergen, rApi m 1, in patients with HBV allergy is limited, suggesting that additional HBV allergens might be of relevance. OBJECTIVE: We performed an analysis of sensitization profiles of patients with HBV allergy to a panel of HBV allergens. METHODS: Diagnosis of HBV allergy (n = 144) was based on history, skin test results, and allergen-specific IgE levels to HBV. IgE reactivity to 6 HBV allergens devoid of cross-reactive carbohydrate determinants (CCD) was analyzed by ImmunoCAP. RESULTS: IgE reactivity to rApi m 1, rApi m 2, rApi m 3, nApi m 4, rApi m 5, and rApi m 10 was detected in 72.2%, 47.9%, 50.0%, 22.9%, 58.3%, and 61.8% of the patients with HBV allergy, respectively. Positive results to at least 1 HBV allergen were detected in 94.4%. IgE reactivity to Api m 3, Api m 10, or both was detected in 68.0% and represented the only HBV allergen-specific IgE in 5% of the patients. Limited inhibition of IgE binding by therapeutic HBV and limited induction of Api m 3- and Api m 10-specific IgG4 in patients obtaining immunotherapy supports recent reports on the underrepresentation of these allergens in therapeutic HBV preparations. CONCLUSION: Analysis of a panel of CCD-free HBV allergens improved diagnostic sensitivity compared with use of rApi m 1 alone, identified additional major allergens, and revealed sensitizations to allergens that have been reported to be absent or underrepresented in therapeutic HBV preparations.


Asunto(s)
Alérgenos/inmunología , Venenos de Abeja/inmunología , Abejas , Hipersensibilidad/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Proteínas de Insectos/inmunología , Alérgenos/química , Animales , Venenos de Abeja/química , Reacciones Cruzadas , Femenino , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Mordeduras y Picaduras de Insectos/diagnóstico , Proteínas de Insectos/química , Masculino
16.
Biochim Biophys Acta ; 1820(12): 1915-25, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22982178

RESUMEN

BACKGROUND: Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. METHODS: We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. RESULTS: Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the ß-phosphate and the fucose moiety at the same time. CONCLUSIONS: Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. GENERAL SIGNIFICANCE: The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.


Asunto(s)
Fucosiltransferasas/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Catálisis , Fucosiltransferasas/química , Fucosiltransferasas/genética , Fucosiltransferasas/aislamiento & purificación , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Resonancia por Plasmón de Superficie
17.
Proc Natl Acad Sci U S A ; 107(8): 3681-6, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133685

RESUMEN

Staphylococcus aureus secretes the SSL7 protein as part of its immune evasion strategy. The protein binds both complement C5 and IgA, yet it is unclear whether SSL7 cross-links these two proteins and, if so, what purpose this serves the pathogen. We have isolated a stable IgA-SSL7-C5 complex, and our crystal structure of the C5-SSL7 complex confirms that binding to C5 occurs exclusively through the C-terminal beta-grasp domain of SSL7 leaving the OB domain free to interact with IgA. SSL7 interacts with C5 >70 A from the C5a cleavage site without inducing significant conformational changes in C5, and efficient inhibition of convertase cleavage of C5 is shown to be IgA dependent. Inhibition of C5a production and bacteriolysis are all shown to require C5 and IgA binding while inhibition of hemolysis is achieved by the C5 binding SSL7 beta-grasp domain alone. These results provide a conceptual and structural basis for the development of a highly specific complement inhibitor preventing only the formation of the lytic membrane attack complex without affecting the important signaling functions of C5a.


Asunto(s)
Complemento C5/antagonistas & inhibidores , Complemento C5/química , Exotoxinas/inmunología , Staphylococcus aureus/inmunología , Animales , Complemento C5/inmunología , Cristalografía por Rayos X , Humanos , Mutación , Estructura Terciaria de Proteína , Conejos , Staphylococcus aureus/patogenicidad
19.
Front Allergy ; 4: 1327391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162556

RESUMEN

Hymenoptera venom (HV) allergy can lead to life threatening conditions by specific IgE (sIgE)-mediated anaphylactic reactions. The knowledge about major allergens from venom of different clinically relevant species increased in the last decades, allowing the development of component-resolved diagnostics in which sIgE to single allergens is analysed. Despite these advances, the precise regions of the allergens that bind to IgE are only known for few HV allergens. The detailed characterization of IgE epitopes may provide valuable information to improve immunodiagnostic tests and to develop new therapeutic strategies using allergen-derived peptides or other targeted approaches. Epitope-resolved analysis is challenging, since the identification of conformational epitopes present in many allergens demands complex technologies for molecular analyses. Furthermore, functional analysis of the epitopes interaction with their respective ligands is needed to distinguish epitopes that can activate the allergic immune response, from those that are recognized by irrelevant antibodies or T cell receptors from non-effector cells. In this review, we focus on the use of mapping and molecular targeting approaches for characterization of the epitopes of the major venom allergens of clinically relevant Hymenoptera species. The screening of the most relevant allergen peptides by epitope mapping could be helpful for the development of molecules that target major and immunodominant epitopes blocking the allergen induced cellular reactions as novel approach for the treatment of HV allergy.

20.
J Immunother ; 46(7): 245-261, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493044

RESUMEN

Breast cancer (BC) treatment has traditionally been challenging due to tumor heterogeneity. Bispecific antibodies (bsAbs) offer a promising approach for overcoming these challenges by targeting multiple specific epitopes. In the current study, we designed a new bsAb against the most common BC cell surface proteins (SPs). To achieve this, we analyzed RNA-sequencing data to identify differentially expressed genes, which were further evaluated using Gene Ontology enrichment, Hidden Markov Models, clinical trial data, and survival analysis to identify druggable gene-encoding cell SPs. Based on these analyses, we constructed and expressed a bsAb targeting the mucin 1 (MUC1) and epidermal growth factor receptor (EGFR) proteins, which are the dominant druggable gene-encoding cell SPs in BC. The recombinant anti-MUC1×EGFR bsAb demonstrated efficient production and high specificity for MUC1 and EGFR + cell lines and BC tissue. Furthermore, the bsAb significantly reduced the proliferation and migration of BC cells. Our results suggested that simultaneous targeting with bsAbs could be a promising targeted therapy for improving the overall efficacy of BC treatment.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Mucina-1/genética , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/genética , Línea Celular , Receptores ErbB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA