Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pharm Res ; 41(3): 441-462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351228

RESUMEN

PURPOSE: This study was designed to verify a virtual population representing patients with nonalcoholic fatty liver disease (NAFLD) to support the implementation of a physiologically based pharmacokinetic (PBPK) modeling approach for prediction of disease-related changes in drug pharmacokinetics. METHODS: A virtual NAFLD patient population was developed in GastroPlus (v.9.8.2) by accounting for pathophysiological changes associated with the disease and proteomics-informed alterations in the abundance of metabolizing enzymes and transporters pertinent to drug disposition. The NAFLD population model was verified using exemplar drugs where elimination is influenced predominantly by cytochrome P450 (CYP) enzymes (chlorzoxazone, caffeine, midazolam, pioglitazone) or by transporters (rosuvastatin, 11C-metformin, morphine and the glucuronide metabolite of morphine). RESULTS: PBPK model predictions of plasma concentrations of all the selected drugs and hepatic radioactivity levels of 11C-metformin were consistent with the clinically-observed data. Importantly, the PBPK simulations using the virtual NAFLD population model provided reliable estimates of the extent of changes in key pharmacokinetic parameters for the exemplar drugs, with mean predicted ratios (NAFLD patients divided by healthy individuals) within 0.80- to 1.25-fold of the clinically-reported values, except for midazolam (prediction-fold difference of 0.72). CONCLUSION: A virtual NAFLD population model within the PBPK framework was successfully developed with good predictive capability of estimating disease-related changes in drug pharmacokinetics. This supports the use of a PBPK modeling approach for prediction of the pharmacokinetics of new investigational or repurposed drugs in patients with NAFLD and may help inform dose adjustments for drugs commonly used to treat comorbidities in this patient population.


Asunto(s)
Metformina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Midazolam/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Biológicos , Derivados de la Morfina
2.
AAPS PharmSciTech ; 25(3): 39, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366149

RESUMEN

Quantitative in silico tools may be leveraged to mechanistically predict the dermato-pharmacokinetics of compounds delivered from topical and transdermal formulations by integrating systems of rate equations that describe permeation through the formulation and layers of skin and pilo-sebaceous unit, and exchange with systemic circulation via local blood flow. Delivery of clobetasol-17 propionate (CP) from DermovateTM cream was simulated using the Transdermal Compartmental Absorption & Transit (TCATTM) Model in GastroPlus®. The cream was treated as an oil-in-water emulsion, with model input parameters estimated from publicly available information and quantitative structure-permeation relationships. From the ranges of values available for model input parameters, a set of parameters was selected by comparing model outputs to CP dermis concentration-time profiles measured by dermal open-flow microperfusion (Bodenlenz et al. Pharm Res. 33(9):2229-38, 2016). Predictions of unbound dermis CP concentrations were reasonably accurate with respect to time and skin depth. Parameter sensitivity analyses revealed considerable dependence of dermis CP concentration profiles on drug solubility in the emulsion, relatively less dependence on dispersed phase volume fraction and CP effective diffusivity in the continuous phase of the emulsion, and negligible dependence on dispersed phase droplet size. Effects of evaporative water loss from the cream and corticosteroid-induced vasoconstriction were also assessed. This work illustrates the applicability of computational modeling to predict sensitivity of dermato-pharmacokinetics to changes in thermodynamic and transport properties of a compound in a topical formulation, particularly in relation to rate-limiting steps in skin permeation. Where these properties can be related to formulation composition and processing, such a computational approach may support the design of topically applied formulations.


Asunto(s)
Clobetasol , Piel , Humanos , Clobetasol/farmacocinética , Emulsiones/farmacología , Simulación por Computador , Agua
3.
Pharm Res ; 37(12): 245, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33215336

RESUMEN

PURPOSE: The purpose of this study is to show how the Ocular Compartmental Absorption & Transit (OCAT™) model in GastroPlus® can be used to characterize ocular drug pharmacokinetic performance in rabbits for ointment formulations. METHODS: A newly OCAT™ model developed for fluorometholone, as well as a previously verified model for dexamethasone, were used to characterize the aqueous humor (AH) concentration following the administration of multiple ointment formulations to rabbit. The model uses the following parameters: application surface area (SA), a fitted application time, and the fitted Higuchi release constant to characterize the rate of passage of the active pharmaceutical ingredient from the ointment formulations into the tears in vivo. RESULTS: Parameter sensitivity analysis was performed to understand the impact of ointment formulation changes on ocular exposure. While application time was found to have a significant impact on the time of maximal concentration in AH, both the application SA and the Higuchi release constant significantly influenced both the maximum concentration and the ocular exposure. CONCLUSIONS: This initial model for ointment ophthalmic formulations is a first step to better understand the interplay between physiological factors and ophthalmic formulation physicochemical properties and their impact on in vivo ocular drug pharmacokinetic performance in rabbits.


Asunto(s)
Dexametasona/farmacocinética , Ojo/metabolismo , Fluorometolona/farmacocinética , Glucocorticoides/farmacocinética , Modelos Biológicos , Absorción Ocular , Administración Oftálmica , Animales , Humor Acuoso/metabolismo , Simulación por Computador , Dexametasona/administración & dosificación , Fluorometolona/administración & dosificación , Glucocorticoides/administración & dosificación , Pomadas , Conejos
5.
J Physiol ; 592(8): 1857-71, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24469073

RESUMEN

Oxygen uptake kinetics (τVO2) are slowed when exercise is initiated from a raised metabolic rate. Whether this reflects the recruitment of muscle fibres differing in oxidative capacity, or slowed blood flow (Q) kinetics is unclear. This study determined τVO2 in canine muscle in situ, with experimental control over muscle activation and Q during contractions initiated from rest and a raised metabolic rate. The gastrocnemius complex of nine anaesthetised, ventilated dogs was isolated and attached to a force transducer. Isometric tetanic contractions (50 Hz; 200 ms duration) via supramaximal sciatic nerve stimulation were used to manipulate metabolic rate: 3 min stimulation at 0.33 Hz (S1), followed by 3 min at 0.67 Hz (S2). Circulation was initially intact (SPON), and subsequently isolated for pump-perfusion (PUMP) above the greatest value in SPON. Muscle VO2 was determined contraction-by-contraction using an ultrasonic flowmeter and venous oximeter, and normalised to tension-time integral (TTI). τVO2/TTI and τQ were less in S1SPON (mean ± s.d.: 13 ± 3 s and 12 ± 4 s, respectively) than in S2SPON (29 ± 19 s and 31 ± 13 s, respectively; P < 0.05). τVO2/TTI was unchanged by pump-perfusion (S1PUMP, 12 ± 4 s; S2PUMP, 24 ± 6 s; P < 0.001) despite increased O2 delivery; at S2 onset, venous O2 saturation was 21 ± 4% and 65 ± 5% in SPON and PUMP, respectively. VO2 kinetics remained slowed when contractions were initiated from a raised metabolic rate despite uniform muscle stimulation and increased O2 delivery. The intracellular mechanism may relate to a falling energy state, approaching saturating ADP concentration, and/or slowed mitochondrial activation; but further study is required. These data add to the evidence that muscle VO2 control is more complex than previously suggested.


Asunto(s)
Músculo Esquelético/metabolismo , Consumo de Oxígeno , Reclutamiento Neurofisiológico , Flujo Sanguíneo Regional , Animales , Perros , Femenino , Hemodinámica , Masculino , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Esfuerzo Físico , Nervio Ciático/fisiología
6.
Pharmaceutics ; 16(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065612

RESUMEN

The development of generic ophthalmic drug products with complex formulations is challenging due to the complexity of the ocular system and a lack of sensitive testing to evaluate the interplay of its physiology with ophthalmic drugs. New methods are needed to facilitate the development of ophthalmic generic drug products. Ocular physiologically based pharmacokinetic (O-PBPK) models can provide insight into drug partitioning in eye tissues that are usually not accessible and/or are challenging to sample in humans. This study aims to demonstrate the utility of an ocular PBPK model to predict human exposure following the administration of ophthalmic suspension. Besifloxacin (Bes) suspension is presented as a case study. The O-PBPK model for Bes ophthalmic suspension (Besivance® 0.6%) accounts for nasolacrimal drainage, suspended particle dissolution in the tears, ocular absorption, and distribution in the rabbit eye. A topical controlled release formulation was used to integrate the effect of Durasite® on Bes ocular retention. The model was subsequently used to predict Bes exposure after its topical administration in humans. Drug-specific parameters were used as validated for rabbits. The physiological parameters were adjusted to match human ocular physiology. Simulated human ocular pharmacokinetic profiles were compared with the observed ocular tissue concentration data to assess the OCAT models' ability to predict human ocular exposure. The O-PBPK model simulations adequately described the observed concentrations in the eye tissues following the topical administration of Bes suspension in rabbits. After adjustment of physiological parameters to represent the human eye, the extrapolation of clinical ocular exposure following a single ocular administration of Bes suspension was successful.

7.
Am J Physiol Regul Integr Comp Physiol ; 305(5): R512-21, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23761640

RESUMEN

With current techniques, experimental measurements alone cannot characterize the effects of oxygen blood-tissue diffusion on muscle oxygen uptake (Vo2) kinetics in contracting skeletal muscle. To complement experimental studies, a computational model is used to quantitatively distinguish the contributions of convective oxygen delivery, diffusion into cells, and oxygen utilization to Vo2 kinetics. The model is validated using previously published experimental Vo2 kinetics in response to slowed blood flow (Q) on-kinetics in canine muscle (τQ = 20 s, 46 s, and 64 s) [Goodwin ML, Hernández A, Lai N, Cabrera ME, Gladden LB. J Appl Physiol. 112:9-19, 2012]. Distinctive effects of permeability-surface area or diffusive conductance (PS) and Q on Vo2 kinetics are investigated. Model simulations quantify the relationship between PS and Q, as well as the effects of diffusion associated with PS and Q dynamics on the mean response time of Vo2. The model indicates that PS and Q are linearly related and that PS increases more with Q when convective delivery is limited by slower Q dynamics. Simulations predict that neither oxygen convective nor diffusive delivery are limiting Vo2 kinetics in the isolated canine gastrocnemius preparation under normal spontaneous conditions during transitions from rest to moderate (submaximal) energy demand, although both operate close to the tipping point.


Asunto(s)
Modelos Biológicos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Esfuerzo Físico/fisiología , Animales , Simulación por Computador , Perros , Cinética , Tasa de Depuración Metabólica , Oxígeno/administración & dosificación
8.
Clin Pharmacol Ther ; 113(2): 275-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35429164

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), representing a clinical spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), is rapidly evolving into a global pandemic. Patients with NAFLD are burdened with high rates of metabolic syndrome-related comorbidities resulting in polypharmacy. Therefore, it is crucial to gain a better understanding of NAFLD-mediated changes in drug disposition and efficacy/toxicity. Despite extensive clinical pharmacokinetic data in cirrhosis, current knowledge concerning pharmacokinetic alterations in NAFLD, particularly at different stages of disease progression, is relatively limited. In vitro-to-in vivo extrapolation coupled with physiologically based pharmacokinetic and pharmacodynamic (IVIVE-PBPK/PD) modeling offers a promising approach for optimizing pharmacologic predictions while refining and reducing clinical studies in this population. Use of IVIVE-PBPK to predict intra-organ drug concentrations at pharmacologically relevant sites of action is particularly advantageous when it can be linked to pharmacodynamic effects. Quantitative systems pharmacology/toxicology (QSP/QST) modeling can be used to translate pharmacokinetic and pharmacodynamic data from PBPK/PD models into clinically relevant predictions of drug response and toxicity. In this review, a detailed summary of NAFLD-mediated alterations in human physiology relevant to drug absorption, distribution, metabolism, and excretion (ADME) is provided. The application of literature-derived physiologic parameters and ADME-associated protein abundance data to inform virtual NAFLD population development and facilitate PBPK/PD, QSP, and QST predictions is discussed along with current limitations of these methodologies and knowledge gaps. The proposed methodologic framework offers great potential for meaningful prediction of pharmacological outcomes in patients with NAFLD and can inform both drug development and clinical practice for this population.


Asunto(s)
Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática , Comorbilidad , Progresión de la Enfermedad , Hígado/metabolismo
9.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 575-584, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36456539

RESUMEN

The development of a generic drug product involves demonstrating that there is no significant difference in the rate and extent to which the active ingredient becomes available at the site of action, relative to the reference listed drug product. This remains challenging for many locally acting topical dermatological products because measuring the concentration of the active ingredient at the site of action in the skin may not be straightforward, and, in most instances, there are no established relationships between skin and plasma pharmacokinetic profiles. In recent years, the Office of Generic Drugs of the US Food and Drug Administration (FDA) established scientific research programs with the goal of enhancing patient access to high quality, affordable topical dermatological generics. A key strategy of these research programs was to leverage modeling and simulation methodologies that accelerate the development of these generics by facilitating alternative bioequivalence approaches for dermatological drug products. This report summarizes relevant insights and discussions from a 2021 FDA public workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches," which illustrated how mechanistic modeling and simulation approaches can be utilized (and have been used) to inform generic drug product development and regulatory decisions during the assessment of generic drug applications submitted to the FDA.


Asunto(s)
Medicamentos Genéricos , Informe de Investigación , Humanos , Preparaciones Farmacéuticas , Piel , Equivalencia Terapéutica
10.
Am J Physiol Regul Integr Comp Physiol ; 303(11): R1110-26, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22972834

RESUMEN

On the basis of experimental studies, the intracellular O(2) (iPo(2))-work rate (WR) relationship in skeletal muscle is not unique. One study found that iPo(2) reached a plateau at 60% of maximal WR, while another found that iPo(2) decreased linearly at higher WR, inferring capillary permeability-surface area (PS) and blood-tissue O(2) gradient, respectively, as alternative dominant factors for determining O(2) diffusion changes during exercise. This relationship is affected by several factors, including O(2) delivery and oxidative and glycolytic capacities of the muscle. In this study, these factors are examined using a mechanistic, mathematical model to analyze experimental data from contracting skeletal muscle and predict the effects of muscle contraction on O(2) transport, glycogenolysis, and iPo(2). The model describes convection, O(2) diffusion, and cellular metabolism, including anaerobic glycogenolysis. Consequently, the model simulates iPo(2) in response to muscle contraction under a variety of experimental conditions. The model was validated by comparison of simulations of O(2) uptake with corresponding experimental responses of electrically stimulated canine muscle under different O(2) content, blood flow, and contraction intensities. The model allows hypothetical variation of PS, glycogenolytic capacity, and blood flow and predictions of the distinctive effects of these factors on the iPo(2)-contraction intensity relationship in canine muscle. Although PS is the main factor regulating O(2) diffusion rate, model simulations indicate that PS and O(2) gradient have essential roles, depending on the specific conditions. Furthermore, the model predicts that different convection and diffusion patterns and metabolic factors may be responsible for different iPo(2)-WR relationships in humans.


Asunto(s)
Metabolismo Energético/fisiología , Modelos Biológicos , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Simulación por Computador , Perros , Glucosa/metabolismo , Humanos , Oxígeno/metabolismo , Reproducibilidad de los Resultados
11.
Adv Exp Med Biol ; 701: 347-52, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21445808

RESUMEN

The quantitative contributions of hemoglobin and myoglobin oxygenation in skeletal muscle depend on physiological factors, especially muscle blood flow (Q( m )) and capillary permeability-surface area (PS). Near-infrared spectroscopy (NIRS) can be used to quantify total heme oxidation, but it is unable to distinguish between hemoglobin and myoglobin. Therefore, a mechanistic computational model has been developed to distinguish the contributions of oxygenated hemoglobin and myoglobin to the total NIRS signal. Model simulations predict how Q( m ) and PS can affect oxygenated hemoglobin and myoglobin.Although both hemoglobin and myoglobin oxygenation decrease with impaired Q( m ), simulations show that myoglobin provides a greater contribution to the overall NIRS signal. A decrease of PS primarily affects myoglobin oxygenation. Based on model simulations, the contribution of myoglobin oxygenation to the total NIRS signal can be significantly different under pathophysiological conditions, such as diabetes and peripheral arterial disorder.


Asunto(s)
Ejercicio Físico , Hemoglobinas/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Humanos , Flujo Sanguíneo Regional , Espectroscopía Infrarroja Corta
12.
AAPS J ; 21(4): 65, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31111305

RESUMEN

Developing mathematical models to predict changes in ocular bioavailability and pharmacokinetics due to differences in the physicochemical properties of complex topical ophthalmic suspension formulations is important in drug product development and regulatory assessment. Herein, we used published FDA clinical pharmacology review data, in-house, and literature rabbit pharmacokinetic data generated for dexamethasone ophthalmic suspensions to demonstrate how the mechanistic Ocular Compartmental Absorption and Transit model by GastroPlus™ can be used to characterize ocular drug pharmacokinetic performance in rabbits for suspension formulations. This model was used to describe the dose-dependent (0.01 to 0.1%) non-linear pharmacokinetic in ocular tissues and characterize the impact of viscosity (1.67 to 72.9 cP) and particle size (5.5 to 22 µm) on in vivo ocular drug absorption and disposition. Parameter sensitivity analysis (hypothetical suspension particle size: 1 to 10 µm, viscosity: 1 to 100 cP) demonstrated that the interplay between formulation properties and physiological clearance through drainage and tear turnover rates in the pre-corneal compartment drives the ocular drug bioavailability. The quick removal of drug suspended particles from the pre-corneal compartment renders the impact of particle size inconsequential relative to viscosity modification. The in vivo ocular absorption is (1) viscosity non-sensitive when the viscosity is high and the impact of viscosity on the pre-corneal residence time reaches the maximum physiological system capacity or (2) viscosity sensitive when the viscosity is below a certain limit. This study reinforces our understanding of the interplay between physiological factors and ophthalmic formulation physicochemical properties and their impact on in vivo ocular drug PK performance in rabbits.


Asunto(s)
Simulación por Computador , Dexametasona/farmacocinética , Ojo/metabolismo , Modelos Biológicos , Absorción Ocular , Animales , Disponibilidad Biológica , Dexametasona/administración & dosificación , Dexametasona/sangre , Relación Dosis-Respuesta a Droga , Humanos , Soluciones Oftálmicas , Conejos , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA