Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(21): 3629-3642, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35285472

RESUMEN

Humans present remarkable diversity in their mitochondrial DNA (mtDNA) in terms of variants across individuals as well as across tissues and even cells within one person. We have investigated the timing of the first appearance of this variant-driven mosaicism. For this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 embryos present blastomeres that carry variants only detected in that cell, showing that mtDNA mosaicism arises very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across different samples. Recurring variants had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants unique to one oocyte or single embryonic cell. These differences were maintained through development, suggesting that the mtDNA mosaicism arising in the embryo is maintained into adulthood. We observed a decline in potentially pathogenic variants between day 3 and day 5 of development, suggesting early selection. We propose a model in which closely clustered mitochondria carrying specific mtDNA variants in the ooplasm are asymmetrically distributed throughout the cell divisions of the preimplantation embryo, resulting in the earliest form of mtDNA mosaicism in human development.


Asunto(s)
ADN Mitocondrial , Desarrollo Embrionario , Adulto , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Oocitos/metabolismo , Mitocondrias/genética , Mosaicismo
2.
Hum Mol Genet ; 29(21): 3566-3577, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33242073

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.


Asunto(s)
Desmetilación , Inestabilidad Genómica , Células Madre Embrionarias Humanas/patología , Proteína 2 Homóloga a MutS/antagonistas & inhibidores , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Sistemas CRISPR-Cas , Metilación de ADN , Reparación del ADN , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Distrofia Miotónica/genética
3.
Reprod Biomed Online ; 46(5): 826-834, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130623

RESUMEN

RESEARCH QUESTION: Is there an association between FSHR sequence variants and reproductive outcomes following IVF in predicted normoresponders? DESIGN: Multicentre prospective cohort study conducted from November 2016 to June 2019 in Vietnam, Belgium and Spain including patients aged <38 years, and undergoing IVF with a predicted normal response with fixed-dose 150 IU rFSH in an antagonist protocol. Genotyping was performed for three FSHR (c.919A>G, c.2039A>G, c.-29G>A) and one FSHB sequence variants (c.-211G>T). Clinical pregnancy rate (CPR), live birth rate (LBR) and miscarriage rate in the first embryo transfer and cumulative live birth rate (CLBR) were compared between the different genotypes. RESULTS: A total of 351 patients underwent at least one embryo transfer. Genetic model analysis that adjusted for patient age, body mass index, ethnicity, type of embryo transfer, embryo stage and number of top-quality embryos transferred revealed a higher CPR for homozygous patients for the variant allele G of c.919A>G when compared to patients with genotype AA (60.3% versus 46.3%, adjusted odds ratio [ORadj] 1.96, 95% confidence interval [CI] 1.09-3.53). Also, c.919A>G genotypes AG and GG presented a higher CPR and LBR when compared with genotype AA (59.1% versus 46.3%, ORadj 1.80, 95% CI 1.08-3.00, and 51.3% versus 39.0%, ORadj 1.69, 95% CI 1.01-2.80, respectively). Cox regression models revealed a statistically significantly lower CLBR for c.2039A>G genotype GG in the codominant model (hazard ratio [HR] 0.66, 95% CI 0.43-0.99). CONCLUSION: These results demonstrate a previously unreported association between variant c.919A>G genotype GG and higher CPR and LBR in infertile patients and reinforce a potential role for genetic background in predicting the reproductive prognosis following IVF.


Asunto(s)
Transferencia de Embrión , Receptores de HFE , Reproducción , Femenino , Humanos , Embarazo , Tasa de Natalidad , Transferencia de Embrión/métodos , Fertilización In Vitro , Genotipo , Nacimiento Vivo , Índice de Embarazo , Estudios Prospectivos , Estudios Retrospectivos , Receptores de HFE/genética
4.
Mol Hum Reprod ; 28(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35404421

RESUMEN

About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon that has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution but also on whether it should be offered to patients at all. We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known about the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?


Asunto(s)
Diagnóstico Preimplantación , Aneuploidia , Blastocisto/patología , Femenino , Pruebas Genéticas/métodos , Humanos , Mosaicismo , Embarazo , Diagnóstico Preimplantación/métodos
5.
Am J Hum Genet ; 100(3): 488-505, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257691

RESUMEN

CTG repeat expansions in DMPK cause myotonic dystrophy (DM1) with a continuum of severity and ages of onset. Congenital DM1 (CDM1), the most severe form, presents distinct clinical features, large expansions, and almost exclusive maternal transmission. The correlation between CDM1 and expansion size is not absolute, suggesting contributions of other factors. We determined CpG methylation flanking the CTG repeat in 79 blood samples from 20 CDM1-affected individuals; 21, 27, and 11 individuals with DM1 but not CDM1 (henceforth non-CDM1) with maternal, paternal, and unknown inheritance; and collections of maternally and paternally derived chorionic villus samples (7 CVSs) and human embryonic stem cells (4 hESCs). All but two CDM1-affected individuals showed high levels of methylation upstream and downstream of the repeat, greater than non-CDM1 individuals (p = 7.04958 × 10-12). Most non-CDM1 individuals were devoid of methylation, where one in six showed downstream methylation. Only two non-CDM1 individuals showed upstream methylation, and these were maternally derived childhood onset, suggesting a continuum of methylation with age of onset. Only maternally derived hESCs and CVSs showed upstream methylation. In contrast, paternally derived samples (27 blood samples, 3 CVSs, and 2 hESCs) never showed upstream methylation. CTG tract length did not strictly correlate with CDM1 or methylation. Thus, methylation patterns flanking the CTG repeat are stronger indicators of CDM1 than repeat size. Spermatogonia with upstream methylation may not survive due to methylation-induced reduced expression of the adjacent SIX5, thereby protecting DM1-affected fathers from having CDM1-affected children. Thus, DMPK methylation may account for the maternal bias for CDM1 transmission, larger maternal CTG expansions, age of onset, and clinical continuum, and may serve as a diagnostic indicator.


Asunto(s)
Islas de CpG , Metilación de ADN , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Adolescente , Adulto , Secuencia de Bases , Línea Celular , Niño , Femenino , Células Madre Embrionarias Humanas/química , Humanos , Modelos Lineales , Masculino , Linaje , Embarazo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Adulto Joven
6.
Reproduction ; 156(5): R143-R153, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30325181

RESUMEN

Human pluripotent stem cells have the capacity to self-renew indefinitely and the ability to differentiate into all cell types of a human body. These characteristics instill them with an enormous promise in regenerative medicine, where they could be used in cell, tissue and even organ-based replacement therapy. In this review, we discuss their potential clinical applications and the advantages and pitfalls for the different types of human pluripotent stem cells to transition from the bench to the bedside. We provide an overview of the current clinical trials, and the specific challenges we are still facing, including immune compatibility, suboptimal differentiation, risk of tumor formation and genome instability.


Asunto(s)
Células Madre Pluripotentes , Medicina Regenerativa/tendencias , Humanos
7.
Mol Hum Reprod ; 20(10): 981-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25082980

RESUMEN

It is well known that human embryonic stem cells (hESCs) frequently acquire recurrent chromosomal abnormalities, very reminiscent of those found in cancerous cells. Given the parallels between cancer and stem cell biology, we set out to investigate the occurrence of a common form of genome instability in tumors, namely microsatellite instability (MSI), in hESCs. MSI is caused by a deficiency in mismatch repair (MMR) genes, which leads to the accumulation of mutations during DNA replication. In this study, we analyzed up to 122 microsatellites in a total of 10 hESC lines, for 1-11 different passages, ranging from passage 7 to passage 334. In two lines, this revealed that two microsatellites had altered allelic patterns. Small-pool PCR for several microsatellites and testing of the Bethesda panel microsatellites (commonly used in cancer studies) revealed that, whilst MSI is common in all tested lines, it occurs at a very low and variable frequency, ranging from ∼1 to 20% of the total number of alleles. In cancerous cells, MSI leads to multiple large shifts in allele sizes within the majority of the cells, while hESCs show small changes in a minority of the cells. Since these genetic alterations do not consistently take over the culture, we assume that they are not concurrent with a selective advantage as it is in tumors. Finally, the MMR genes showed a very variable gene expression that could not be correlated with the variable (low) levels of MSI in the different hESC lines.


Asunto(s)
Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Inestabilidad de Microsatélites , Línea Celular , Hibridación Genómica Comparativa , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , Humanos , Tasa de Mutación
8.
Hum Reprod ; 29(8): 1603-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25006203

RESUMEN

STUDY QUESTION: How has the interface between genetics and assisted reproduction technology (ART) evolved since 2005? SUMMARY ANSWER: The interface between ART and genetics has become more entwined as we increase our understanding about the genetics of infertility and we are able to perform more comprehensive genetic testing. WHAT IS KNOWN ALREADY: In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and ART and published an extended background paper, recommendations and two Editorials. STUDY DESIGN, SIZE, DURATION: An interdisciplinary workshop was held, involving representatives of both professional societies and experts from the European Union Eurogentest2 Coordination Action Project. PARTICIPANTS/MATERIALS, SETTING, METHODS: In March 2012, a group of experts from the European Society of Human Genetics, the European Society of Human Reproduction and Embryology and the EuroGentest2 Coordination Action Project met to discuss developments at the interface between clinical genetics and ART. MAIN RESULTS AND THE ROLE OF CHANCE: As more genetic causes of reproductive failure are now recognized and an increasing number of patients undergo testing of their genome prior to conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and PGD may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from RCTs to substantiate that the technique is both effective and efficient. Whole genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. LIMITATIONS, REASONS FOR CAUTION: The legal landscape regarding assisted reproduction is evolving, but still remains very heterogeneous and often contradictory. The lack of legal harmonization and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe, and beyond. WIDER IMPLICATIONS OF THE FINDINGS: This continually evolving field requires communication between the clinical genetics and IVF teams and patients to ensure that they are fully informed and can make well-considered choices. STUDY FUNDING/COMPETING INTERESTS: Funding was received from ESHRE, ESHG and EuroGentest2 European Union Coordination Action project (FP7 - HEALTH-F4-2010-26146) to support attendance at this meeting.


Asunto(s)
Técnicas Reproductivas Asistidas/tendencias , Acreditación , Células Madre Embrionarias , Epigenómica , Europa (Continente) , Femenino , Genética Médica/ética , Genética Médica/legislación & jurisprudencia , Genética Médica/tendencias , Inestabilidad Genómica , Accesibilidad a los Servicios de Salud , Humanos , Infertilidad Femenina/genética , Infertilidad Masculina/genética , Masculino , Turismo Médico/tendencias , Diagnóstico Preimplantación/ética , Diagnóstico Preimplantación/tendencias , Medicina Reproductiva/ética , Medicina Reproductiva/legislación & jurisprudencia , Medicina Reproductiva/tendencias , Técnicas Reproductivas Asistidas/efectos adversos , Técnicas Reproductivas Asistidas/ética , Técnicas Reproductivas Asistidas/legislación & jurisprudencia , Sociedades Médicas
9.
Stem Cell Reports ; 19(1): 11-27, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38157850

RESUMEN

The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.


Asunto(s)
Células Madre Pluripotentes , Humanos , Mutación , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Aneuploidia , Diferenciación Celular/genética
10.
Stem Cell Reports ; 19(4): 562-578, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38552632

RESUMEN

Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Humanos , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Cromosomas
11.
Nat Commun ; 15(1): 1232, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336715

RESUMEN

Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Resultado del Embarazo , Embarazo Múltiple , Nacimiento Prematuro/epidemiología , Peso al Nacer , Mitocondrias/genética , ADN Mitocondrial/genética
12.
Hum Mol Genet ; 20(1): 176-85, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20935170

RESUMEN

Huntington's disease (HD) and myotonic dystrophy (DM1) are caused by trinucleotide repeat expansions. The repeats show different instability patterns according to the disorder, cell type and developmental stage. Here we studied the behavior of these repeats in DM1- and HD-derived human embryonic stem cells (hESCs) before and after differentiation, and its relationship to the DNA mismatch repair (MMR). The relatively small (CAG)44 HD expansion was stable in undifferentiated and differentiated HD hESCs. In contrast, the DM1 repeat showed instability from the earliest passages onwards in DM1 hESCs with (CTG)250 or (CTG)1800. Upon differentiation the DM1 repeat was stabilized. MMR genes, including hMSH2, hMSH3 and hMSH6 were assessed at the transcript and protein levels in differentiated cells. The coincidence of differentiation-induced down-regulated MMR expression with reduced instability of the long expanded repeats in hESCs is consistent with a known requirement of MMR proteins for repeat instability in transgenic mice. This is the first demonstration of a correlation between altered repeat instability of an endogenous DM1 locus and natural MMR down-regulation, in contrast to the commonly used murine knock-down systems.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Embrionarias/patología , Enfermedad de Huntington/patología , Distrofia Miotónica/patología , Expansión de Repetición de Trinucleótido/genética , Animales , Diferenciación Celular , Reparación de la Incompatibilidad de ADN/genética , Regulación hacia Abajo , Inestabilidad Genómica , Humanos , Enfermedad de Huntington/genética , Ratones , Ratones Transgénicos , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga de MutS , Distrofia Miotónica/genética
13.
Stem Cell Reports ; 18(9): 1744-1752, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37703820

RESUMEN

The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research.


Asunto(s)
Investigación con Células Madre , Humanos , Reproducibilidad de los Resultados
15.
Methods Mol Biol ; 2429: 57-72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507155

RESUMEN

Human pluripotent stem cells have a wide variety of potential applications, ranging from clinical translation to in vitro disease modeling. However, there is significant variation in the potential of individual cell lines to differentiate towards each of the three germ layers as a result of (epi)genetic background, culture conditions, and other factors. We describe here in detail a methodology to evaluate this bias using short directed differentiation towards neuroectoderm, mesendoderm, and definitive endoderm in combination with quantification by RT-qPCR and immunofluorescent stains.


Asunto(s)
Endodermo , Células Madre Pluripotentes , Diferenciación Celular , Estratos Germinativos , Humanos , Placa Neural
16.
Biol Open ; 11(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35019138

RESUMEN

Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1.


Asunto(s)
Distrofia Miotónica , Células Madre Embrionarias/metabolismo , Humanos , Metilación , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , ARN/metabolismo
17.
Hum Reprod Open ; 2022(4): hoac044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349144

RESUMEN

STUDY QUESTION: How should ART/preimplantation genetic testing (PGT) centres manage the detection of chromosomal mosaicism following PGT? SUMMARY ANSWER: Thirty good practice recommendations were formulated that can be used by ART/PGT centres as a basis for their own policy with regards to the management of 'mosaic' embryos. WHAT IS KNOWN ALREADY: The use of comprehensive chromosome screening technologies has provided a variety of data on the incidence of chromosomal mosaicism at the preimplantation stage of development and evidence is accumulating that clarifies the clinical outcomes after transfer of embryos with putative mosaic results, with regards to implantation, miscarriage and live birth rates, and neonatal outcomes. STUDY DESIGN SIZE DURATION: This document was developed according to a predefined methodology for ESHRE good practice recommendations. Recommendations are supported by data from the literature, a large survey evaluating current practice and published guidance documents. The literature search was performed using PubMed and focused on studies published between 2010 and 2022. The survey was performed through a web-based questionnaire distributed to members of the ESHRE special interest groups (SIG) Reproductive Genetics and Embryology, and the ESHRE PGT Consortium members. It included questions on ART and PGT, reporting, embryo transfer policy and follow-up of transfers. The final dataset represents 239 centres. PARTICIPANTS/MATERIALS SETTING METHODS: The working group (WG) included 16 members with expertise on the ART/PGT process and chromosomal mosaicism. The recommendations for clinical practice were formulated based on the expert opinion of the WG, while taking into consideration the published data and results of the survey. MAIN RESULTS AND THE ROLE OF CHANCE: Eighty percent of centres that biopsy three or more cells report mosaicism, even though only 66.9% of all centres have validated their technology and only 61.8% of these have validated specifically for the calling of chromosomal mosaicism. The criteria for designating mosaicism, reporting and transfer policies vary significantly across the centres replying to the survey. The WG formulated recommendations on how to manage the detection of chromosomal mosaicism in clinical practice, considering validation, risk assessment, designating and reporting mosaicism, embryo transfer policies, prenatal testing and follow-up. Guidance is also provided on the essential elements that should constitute the consent forms and the genetic report, and that should be covered in genetic counselling. As there are several unknowns in chromosomal mosaicism, it is recommended that PGT centres monitor emerging data on the topic and adapt or refine their policy whenever new insights are available from evidence. LIMITATIONS REASONS FOR CAUTION: Rather than providing instant standardized advice, the recommendations should help ART/PGT centres in developing their own policy towards the management of putative mosaic embryos in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS: This document will help facilitate a more knowledge-based approach for dealing with chromosomal mosaicism in different centres. In addition to recommendations for clinical practice, recommendations for future research were formulated. Following up on these will direct research towards existing research gaps with direct translation to clinical practice. Emerging data will help in improving guidance, and a more evidence-based approach of managing chromosomal mosaicism. STUDY FUNDING/COMPETING INTERESTS: The WG received technical support from ESHRE. M.D.R. participated in the EQA special advisory group, outside the submitted work, and is the chair of the PGT WG of the Belgian society for human genetics. D.W. declared receiving salary from Juno Genetics, UK. A.C. is an employee of Igenomix, Italy and C.R. is an employee of Igenomix, Spain. C.S. received a research grant from FWO, Belgium, not related to the submitted work. I.S. declared being a Co-founder of IVFvision Ltd, UK. J.R.V. declared patents related to 'Methods for haplotyping single-cells' and 'Haplotyping and copy number typing using polymorphic variant allelic frequencies', and being a board member of Preimplantation Genetic Diagnosis International Society (PGDIS) and International Society for Prenatal Diagnosis (ISPD). K.S. reported being Chair-elect of ESHRE. The other authors had nothing to disclose. DISCLAIMER: This Good Practice Recommendations (GPR) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.  ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.  Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.

18.
Cell Stem Cell ; 29(12): 1624-1636, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459966

RESUMEN

It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.


Asunto(s)
Epigenómica , Células Madre Pluripotentes , Humanos , Investigación con Células Madre , Oncogenes , Epigénesis Genética
19.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831467

RESUMEN

Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells' clinical potential.


Asunto(s)
Aberraciones Cromosómicas , Células Madre Pluripotentes/patología , Carcinogénesis/genética , Carcinogénesis/patología , Diferenciación Celular/genética , Variaciones en el Número de Copia de ADN/genética , Humanos , Modelos Biológicos , Células Madre Pluripotentes/metabolismo
20.
Sci Rep ; 11(1): 6137, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731744

RESUMEN

Low differentiation propensity towards a targeted lineage can significantly hamper the utility of individual human pluripotent stem cell (hPSC) lines in biomedical applications. Here, we use monolayer and micropatterned cell cultures, as well as transcriptomic profiling, to investigate how variability in signalling pathway activity between human embryonic stem cell lines affects their differentiation efficiency towards definitive endoderm (DE). We show that endogenous suppression of WNT signalling in hPSCs at the onset of differentiation prevents the switch from self-renewal to DE specification. Gene expression profiling reveals that this inefficient switch is reflected in NANOG expression dynamics. Importantly, we demonstrate that higher WNT stimulation or inhibition of the PI3K/AKT signalling can overcome the DE commitment blockage. Our findings highlight that redirection of the activity of Activin/NODAL pathway by WNT signalling towards mediating DE fate specification is a vulnerable spot, as disruption of this process can result in poor hPSC specification towards DE.


Asunto(s)
Endodermo , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas , Vía de Señalización Wnt , Diferenciación Celular , Línea Celular , Endodermo/citología , Endodermo/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA