Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683844

RESUMEN

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Asunto(s)
Citoesqueleto , Vuelo Animal , Desarrollo de Músculos , Proteínas de Unión al ARN , Sarcómeros , Animales , Empalme Alternativo/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Vuelo Animal/fisiología , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculos/metabolismo , Miofibrillas/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Sarcómeros/metabolismo
2.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37432342

RESUMEN

MOTIVATION: Alternative splicing (AS) of introns from pre-mRNA produces diverse sets of transcripts across cell types and tissues, but is also dysregulated in many diseases. Alignment-free computational methods have greatly accelerated the quantification of mRNA transcripts from short RNA-seq reads, but they inherently rely on a catalog of known transcripts and might miss novel, disease-specific splicing events. By contrast, alignment of reads to the genome can effectively identify novel exonic segments and introns. Event-based methods then count how many reads align to predefined features. However, an alignment is more expensive to compute and constitutes a bottleneck in many AS analysis methods. RESULTS: Here, we propose fortuna, a method that guesses novel combinations of annotated splice sites to create transcript fragments. It then pseudoaligns reads to fragments using kallisto and efficiently derives counts of the most elementary splicing units from kallisto's equivalence classes. These counts can be directly used for AS analysis or summarized to larger units as used by other widely applied methods. In experiments on synthetic and real data, fortuna was around 7× faster than traditional align and count approaches, and was able to analyze almost 300 million reads in just 15 min when using four threads. It mapped reads containing mismatches more accurately across novel junctions and found more reads supporting aberrant splicing events in patients with autism spectrum disorder than existing methods. We further used fortuna to identify novel, tissue-specific splicing events in Drosophila. AVAILABILITY AND IMPLEMENTATION: fortuna source code is available at https://github.com/canzarlab/fortuna.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Análisis de Secuencia de ARN/métodos , Empalme del ARN , Empalme Alternativo , Programas Informáticos
3.
Cell ; 136(1): 23-5, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135885

RESUMEN

In the fruit fly Drosophila, not all olfactory sensory neurons express a seven transmembrane odorant receptor, suggesting that other types of odorant receptors might exist. Benton et al. (2009) now present evidence that a family of proteins related to ionotropic glutamate receptors is a previously unrecognized class of odorant receptors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/química , Drosophila/metabolismo , Receptores Odorantes/metabolismo , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Receptores de Glutamato/química , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética
4.
Semin Cell Dev Biol ; 104: 65-80, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32070639

RESUMEN

Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.


Asunto(s)
Empalme Alternativo , Músculos/metabolismo , Enfermedades Musculares/metabolismo , Empalme Alternativo/genética , Animales , Humanos , Desarrollo de Músculos , Músculos/citología , Enfermedades Musculares/genética , Enfermedades Musculares/patología
5.
PLoS Biol ; 16(4): e2004718, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29702642

RESUMEN

Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Drosophila melanogaster/ultraestructura , Miofibrillas/ultraestructura , Pupa/ultraestructura , Sarcómeros/ultraestructura , Citoesqueleto de Actina/metabolismo , Actinas/ultraestructura , Animales , Fenómenos Biomecánicos , Conectina/metabolismo , Conectina/ultraestructura , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Vuelo Animal/fisiología , Microscopía de Polarización/métodos , Miofibrillas/metabolismo , Miosinas/metabolismo , Miosinas/ultraestructura , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Sarcómeros/metabolismo
6.
EMBO Rep ; 16(2): 178-91, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25532219

RESUMEN

In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis.


Asunto(s)
Empalme Alternativo/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Animales , Drosophila , Drosophila melanogaster
7.
Exp Cell Res ; 321(1): 90-8, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24145055

RESUMEN

Muscles coordinate body movements throughout the animal kingdom. Each skeletal muscle is built of large, multi-nucleated cells, called myofibers, which are classified into several functionally distinct types. The typical fiber-type composition of each muscle arises during development, and in mammals is extensively adjusted in response to postnatal exercise. Understanding how functionally distinct muscle fiber-types arise is important for unraveling the molecular basis of diseases from cardiomyopathies to muscular dystrophies. In this review, we focus on recent advances in Drosophila and mammals in understanding how muscle fiber-type specification is controlled by the regulation of transcription and alternative splicing. We illustrate the cooperation of general myogenic transcription factors with muscle fiber-type specific transcriptional regulators as a basic principle for fiber-type specification, which is conserved from flies to mammals. We also examine how regulated alternative splicing of sarcomeric proteins in both flies and mammals can directly instruct the physiological and biophysical differences between fiber-types. Thus, research in Drosophila can provide important mechanistic insight into muscle fiber specification, which is relevant to homologous processes in mammals and to the pathology of muscle diseases.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/metabolismo , Transcripción Genética , Animales , Linaje de la Célula/genética , Drosophila , Mamíferos , Fibras Musculares Esqueléticas/metabolismo
8.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34996845

RESUMEN

Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.


Asunto(s)
Proteínas de Drosophila , Miofibrillas , Proteínas de Unión al ARN , Animales , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Miofibrillas/genética , Miofibrillas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Nat Biotechnol ; 40(5): 741-750, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35013600

RESUMEN

The accuracy of methods for assembling transcripts from short-read RNA sequencing data is limited by the lack of long-range information. Here we introduce Ladder-seq, an approach that separates transcripts according to their lengths before sequencing and uses the additional information to improve the quantification and assembly of transcripts. Using simulated data, we show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of complex genes with substantially higher accuracy than conventional kallisto. For reference-based assembly, a tailored scheme based on the StringTie2 algorithm reconstructs a single transcript with 30.8% higher precision than its conventional counterpart and is more than 30% more sensitive for complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly assembles 78% more transcripts than conventional Trinity while improving precision by 78%. In experimental data, Ladder-seq reveals 40% more genes harboring isoform switches compared to conventional RNA sequencing and unveils widespread changes in isoform usage upon m6A depletion by Mettl14 knockout.


Asunto(s)
ARN , Transcriptoma , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas , RNA-Seq , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética
10.
Cells ; 10(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34685485

RESUMEN

The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.


Asunto(s)
Empalme Alternativo/genética , Fibras Musculares Esqueléticas/metabolismo , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Desarrollo de Músculos/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN/genética
11.
J Vis Exp ; (152)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31680668

RESUMEN

Drosophila flight muscle is a powerful model to study diverse processes such as transcriptional regulation, alternative splicing, metabolism, and mechanobiology, which all influence muscle development and myofibrillogenesis. Omics data, such as those generated by mass spectrometry or deep sequencing, can provide important mechanistic insights into these biological processes. For such approaches, it is beneficial to analyze tissue-specific samples to increase both selectivity and specificity of the omics fingerprints. Here we present a protocol for dissection of fluorescent-labeled flight muscle from live pupae to generate highly enriched muscle samples for omics applications. We first describe how to dissect flight muscles at early pupal stages (<48 h after puparium formation [APF]), when the muscles are discernable by green fluorescent protein (GFP) labeling. We then describe how to dissect muscles from late pupae (>48 h APF) or adults, when muscles are distinguishable under a dissecting microscope. The accompanying video protocol will make these technically demanding dissections more widely accessible to the muscle and Drosophila research communities. For RNA applications, we assay the quantity and quality of RNA that can be isolated at different time points and with different approaches. We further show that Bruno1 (Bru1) is necessary for a temporal shift in myosin heavy chain (Mhc) splicing, demonstrating that dissected muscles can be used for mRNA-Seq, mass spectrometry, and reverse transcription polymerase chain reaction (RT-PCR) applications. This dissection protocol will help promote tissue-specific omics analyses and can be generally applied to study multiple biological aspects of myogenesis.


Asunto(s)
Drosophila melanogaster/fisiología , Vuelo Animal , Desarrollo de Músculos/fisiología , Animales , Disección , Miofibrillas/fisiología , Proteómica , Análisis de Secuencia de ARN
12.
Int J Biochem Cell Biol ; 110: 29-49, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30818081

RESUMEN

Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.


Asunto(s)
Músculos/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Enfermedades Neuromusculares/metabolismo , Proteínas de Unión al ARN/genética
13.
Elife ; 72018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29846170

RESUMEN

Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.


Asunto(s)
Drosophila melanogaster/genética , Vuelo Animal/fisiología , Morfogénesis , Músculos/fisiología , Sarcómeros/metabolismo , Transcriptoma/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
14.
Physiol Genomics ; 21(1): 43-58, 2005 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-15613614

RESUMEN

This paper compares the gene expression profiles identified by short (Affymetrix U95AV2) or long (Agilent Hu1A) oligonucleotide arrays on a model for upregulation of a cluster of antioxidant responsive element-driven genes by treatment with tert-butylhydroquinone. MAS 5.0, dCHIP, and RMA were applied to normalize the Affymetrix data, and Lowess regression was considered for Agilent data. SAM was used to identify the differential gene expression. A set of biological markers and housekeeping genes were chosen to evaluate the performance of multiple normalization approaches. Both arrays illustrated a definite set of overlapping genes between the data sets regardless of data mining tools used. However, unique gene expression profiles based on the platform used were also revealed and confirmed by quantitative RT-PCR. Further analysis of the data revealed by alternative approaches suggested that alternative splicing, multiple vs. single probe(s) measurement, and use or nonuse of mismatch probes may account for the discrepant data. Therefore, these two microarray technologies offer relatively reliable data. Integration of the gene expression profiles from different array platforms may not only help for cross-validation but also provide a more complete view of the transcriptional scenario.


Asunto(s)
Antioxidantes/química , Regulación de la Expresión Génica , Hidroquinonas/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligonucleótidos/química , Empalme Alternativo , Animales , Disparidad de Par Base , Biomarcadores , Análisis por Conglomerados , Reparación del ADN , Bases de Datos Genéticas , Expresión Génica , Perfilación de la Expresión Génica , Técnicas Genéticas , Humanos , Luciferasas/metabolismo , Ratones , Mutación , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos/química , ARN/química , Curva ROC , Ratas , Elementos de Respuesta , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
15.
Genetics ; 197(1): 175-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24558258

RESUMEN

Insulin-producing cells (IPCs) in the Drosophila brain produce and release insulin-like peptides (ILPs) to the hemolymph. ILPs are crucial for growth and regulation of metabolic activity in flies, functions analogous to those of mammalian insulin and insulin-like growth factors (IGFs). To identify components functioning in IPCs to control ILP production, we employed genomic and candidate gene approaches. We used laser microdissection and messenger RNA sequencing to characterize the transcriptome of larval IPCs. IPCs highly express many genes homologous to genes active in insulin-producing ß-cells of the mammalian pancreas. The genes in common encode ILPs and proteins that control insulin metabolism, storage, secretion, ß-cell proliferation, and some not previously linked to insulin production or ß-cell function. Among these novelties is unc-104, a kinesin 3 family gene, which is more highly expressed in IPCs compared to most other neurons. Knockdown of unc-104 in IPCs impaired ILP secretion and reduced peripheral insulin signaling. Unc-104 appears to transport ILPs along axons. As a complementary approach, we tested dominant-negative Rab genes to find Rab proteins required in IPCs for ILP production or secretion. Rab1 was identified as crucial for ILP trafficking in IPCs. Inhibition of Rab1 in IPCs increased circulating sugar levels, delayed development, and lowered weight and body size. Immunofluorescence labeling of Rab1 showed its tight association with ILP2 in the Golgi of IPCs. Unc-104 and Rab1 join other proteins required for ILP transport in IPCs.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Axones/metabolismo , Metabolismo de los Hidratos de Carbono , Secuencia Conservada , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Hemolinfa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
PLoS One ; 5(7): e11503, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20634890

RESUMEN

BACKGROUND: Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons. METHODS AND FINDINGS: In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs. CONCLUSIONS: The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/citología , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Ratones , Neuronas/citología , Células de Purkinje/citología , Células de Purkinje/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Tomografía
17.
Nat Neurosci ; 13(4): 439-49, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20139975

RESUMEN

Local interneurons are essential in information processing by neural circuits. Here we present a comprehensive genetic, anatomical and electrophysiological analysis of local interneurons (LNs) in the Drosophila melanogaster antennal lobe, the first olfactory processing center in the brain. We found LNs to be diverse in their neurotransmitter profiles, connectivity and physiological properties. Analysis of >1,500 individual LNs revealed principal morphological classes characterized by coarsely stereotyped glomerular innervation patterns. Some of these morphological classes showed distinct physiological properties. However, the finer-scale connectivity of an individual LN varied considerably across brains, and there was notable physiological variability within each morphological or genetic class. Finally, LN innervation required interaction with olfactory receptor neurons during development, and some individual variability also likely reflected LN-LN interactions. Our results reveal an unexpected degree of complexity and individual variation in an invertebrate neural circuit, a result that creates challenges for solving the Drosophila connectome.


Asunto(s)
Variación Genética/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Neuronas Receptoras Olfatorias/fisiología , Animales , Drosophila melanogaster , Interneuronas/citología , Red Nerviosa/citología , Neurogénesis/fisiología , Neuronas Receptoras Olfatorias/citología , Olfato/fisiología
18.
J Neurochem ; 92(3): 462-76, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659217

RESUMEN

We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism(s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H(2)O(2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.


Asunto(s)
Caspasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Rotenona/toxicidad , Células Madre/efectos de los fármacos , Células Madre/enzimología , Adenosina Trifosfato/metabolismo , Camptotecina/toxicidad , Caspasa 3 , Caspasa 9 , Muerte Celular/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Humanos , Etiquetado Corte-Fin in Situ , Modelos Biológicos , Neuronas/citología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Inhibidores de Topoisomerasa I , Desacopladores/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA