Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 17(12): e1010081, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871323

RESUMEN

Protective immunity to parasitic infections has been difficult to elicit by vaccines. Among parasites that evade vaccine-induced immunity is Toxoplasma gondii, which causes lethal secondary infections in chronically infected mice. Here we report that unlike susceptible C57BL/6J mice, A/J mice were highly resistant to secondary infection. To identify correlates of immunity, we utilized forward genetics to identify Nfkbid, a nuclear regulator of NF-κB that is required for B cell activation and B-1 cell development. Nfkbid-null mice ("bumble") did not generate parasite-specific IgM and lacked robust parasite-specific IgG, which correlated with defects in B-2 cell maturation and class-switch recombination. Though high-affinity antibodies were B-2 derived, transfer of B-1 cells partially rescued the immunity defects observed in bumble mice and were required for 100% vaccine efficacy in bone marrow chimeric mice. Immunity in resistant mice correlated with robust isotype class-switching in both B cell lineages, which can be fine-tuned by Nfkbid gene expression. We propose a model whereby humoral immunity to T. gondii is regulated by Nfkbid and requires B-1 and B-2 cells for full protection.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Proteínas I-kappa B/inmunología , Inmunidad Humoral/inmunología , Toxoplasmosis Animal/inmunología , Animales , Linfocitos B/inmunología , Ratones , Toxoplasma
2.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29967089

RESUMEN

T cell exhaustion is a state of hyporesponsiveness that develops during many chronic infections and cancer. Neutralization of inhibitory receptors, or "checkpoint blockade," can reverse T cell exhaustion and lead to beneficial prognoses in experimental and clinical settings. Whether checkpoint blockade can resolve lethal acute infections is less understood but may be beneficial in vaccination protocols that fail to elicit sterilizing immunity. Since a fully protective vaccine for any human parasite has yet to be developed, we explored the efficacy of checkpoint inhibitors in a mouse model of Toxoplasma gondii reinfection. Mice chronically infected with an avirulent type III strain survive reinfection with the type I RH strain but not the MAS, GUY-DOS, and GT1 parasite strains. We report here that mouse susceptibility to secondary infection correlates with the initial parasite burden and that protection against the RH strain is dependent on CD8 but not CD4 T cells in this model. When given a lethal secondary infection, CD8 and CD4 T cells upregulate several coinhibitory receptors, including PD-1, TIM-3, 4-1bb, and CTLA-4. Moreover, the gamma interferon (IFN-γ) response of CD8 but not CD4 T cells is significantly reduced during secondary infection with virulent strains, suggesting that checkpoint blockade may reduce disease severity. However, single and combination therapies targeting TIM-3, CTLA-4, and/or PD-L1 failed to reverse susceptibility to secondary infection. These results suggest that additional host responses, which are refractory to checkpoint blockade, are likely required for immunity to this pathogen.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis Animal/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL
3.
J Bacteriol ; 199(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242721

RESUMEN

Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme, a forward genetic screen was employed. The first gene identified using this screen, designated ogtA, encodes a putative O-linked ß-N-acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and ΔogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5' direction of pilA fused to gfp produced lower levels of fluorescence in the ΔogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the ΔogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O-GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia.IMPORTANCE Filamentous cyanobacteria are among the most developmentally complex prokaryotes. Species such as Nostoc punctiforme develop an array of cell types, including nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogonia, that function in dispersal as well as the establishment of nitrogen-fixing symbioses with plants and fungi. These symbioses are major contributors to global nitrogen fixation. Despite the fundamental importance of hormogonia to the life cycle of filamentous cyanobacteria and the establishment of symbioses, the molecular regulation of hormogonium development is largely undefined. We employed a genetic screen to identify genes essential for hormogonium development and motility in Nostoc punctiforme The first gene identified using this screen encodes a eukaryotic-like O-linked ß-N-acetylglucosamine transferase that is required for accumulation of PilA in hormogonia.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Nostoc/enzimología , Nostoc/crecimiento & desarrollo , Proteínas Bacterianas/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/fisiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Movimiento , Mutación , N-Acetilglucosaminiltransferasas/genética , Nostoc/genética , Simbiosis
4.
Arch Microbiol ; 198(2): 137-47, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26576759

RESUMEN

Nostoc punctiforme is a filamentous cyanobacterium which forms nitrogen-fixing symbioses with several different plants and fungi. Establishment of these symbioses requires the formation of motile hormogonium filaments. Once infected, the plant partner is thought to supply a hormogonium-repressing factor (HRF) to maintain the cyanobacteria in a vegetative, nitrogen-fixing state. Evidence implies that sucrose may serve as a HRF. Here, we tested the effects of sucralose, a non-metabolizable sucrose analog, on hormogonium differentiation. Sucralose inhibited hormogonium differentiation at a concentration approximately one-tenth that of sucrose. This result implies that: (1) sucrose, not a sucrose catabolite, is perceived by the cell and (2) inhibition is not due to a more general osmolarity-dependent effect. Additionally, both sucrose and sucralose induced the accrual of a polysaccharide sheath which bound specifically to the lectin ConA, indicating the presence of α-D-mannose and/or α-D-glucose. A ConA-specific polysaccharide was also found to be expressed in N. punctiforme colonies from tissue sections of the symbiotically grown hornwort Anthoceros punctatus. These findings imply that plant-derived sucrose or sucrose analogs may have multiple effects on N. punctiforme, including both repression of hormogonia and the induction of a polysaccharide sheath that may be essential to establish and maintain the symbiotic state.


Asunto(s)
Nostoc/efectos de los fármacos , Sacarosa/análogos & derivados , Simbiosis , Magnoliopsida/microbiología , Nostoc/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Sacarosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA