Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 12(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930571

RESUMEN

Different modifications of the standard bread recipe have been proposed to improve its nutritional and health benefits. Here, we utilized the in vitro Human Gut Simulator (HGS) to assess the fermentation of one such artisan bread by human gut microbiota. Dried and milled bread, composed of almond flour, psyllium husks, and flax seeds as its three main ingredients, was first subjected to an in vitro protocol designed to mimic human oro-gastro-intestinal digestion. The bread digest was then supplied to complex human gut microbial communities, replacing the typical Western diet-based medium (WM) of the GHS system. Switching the medium from WM to bread digest resulted in statistically significant alterations in the community structure, encoded functions, produced short-chain fatty acids, and available antioxidants. The abundances of dietary fiber degraders Enterocloster, Mitsuokella, and Prevotella increased; levels of Gemmiger, Faecalibacterium, and Blautia decreased. These community alterations resembled the previously revealed differences in the distal gut microbiota of healthy human subjects consuming typical Mediterranean vs. Western-pattern diets. Therefore, the consumption of bread high in dietary fiber and unsaturated fatty acids might recapitulate the beneficial effects of the Mediterranean diet on the gut microbiota.

2.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258905

RESUMEN

Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.


Asunto(s)
Hipersensibilidad , Neuralgia , Neurofibromatosis 1 , Animales , Ratones , Neurofibromatosis 1/genética , Nocicepción , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Células de Schwann
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA