RESUMEN
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/metabolismo , Cognición , Neuronas/metabolismo , ARN , Empalme del ARN/genética , Proteínas tau/metabolismoRESUMEN
The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Animales , Línea Celular , Colesterol/biosíntesis , Retículo Endoplásmico/genética , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Células Madre Pluripotentes Inducidas , Metabolismo de los Lípidos , Lipidómica , Ratones , Mitocondrias/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Dominios Proteicos , ARN Interferente Pequeño , Esfingomielina Fosfodiesterasa/metabolismoRESUMEN
Alzheimer's disease (AD) is the most common cause of dementia, and disease mechanisms are still not fully understood. Here, we explored pathological changes in human induced pluripotent stem cell (iPSC)-derived neurons carrying the familial AD APPV717I mutation after cell injection into the mouse forebrain. APPV717I mutant iPSCs and isogenic controls were differentiated into neurons revealing enhanced Aß42 production, elevated phospho-tau, and impaired neurite outgrowth in APPV717I neurons. Two months after transplantation, APPV717I and control neural cells showed robust engraftment but at 12 months post-injection, APPV717I grafts were smaller and demonstrated impaired neurite outgrowth compared to controls, while plaque and tangle pathology were not seen. Single-nucleus RNA-sequencing of micro-dissected grafts, performed 2 months after cell injection, identified significantly altered transcriptome signatures in APPV717I iPSC-derived neurons pointing towards dysregulated synaptic function and axon guidance. Interestingly, APPV717I neurons showed an increased expression of genes, many of which are also upregulated in postmortem neurons of AD patients including the transmembrane protein LINGO2. Downregulation of LINGO2 in cultured APPV717I neurons rescued neurite outgrowth deficits and reversed key AD-associated transcriptional changes related but not limited to synaptic function, apoptosis and cellular senescence. These results provide important insights into transcriptional dysregulation in xenografted APPV717I neurons linked to synaptic function, and they indicate that LINGO2 may represent a potential therapeutic target in AD.
Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Células Madre Pluripotentes Inducidas , Neuronas , Transcriptoma , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Neuronas/patología , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mutación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sinapsis/patología , Sinapsis/metabolismo , Péptidos beta-Amiloides/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood-brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases. However, the precise cellular identity of these induced brain microvascular endothelial cells (iBMECs) has not been well described. Employing a comprehensive transcriptomic metaanalysis of previously published hPSC-derived cells validated by physiological assays, we demonstrate that iBMECs lack functional attributes of ECs since they are deficient in vascular lineage genes while expressing clusters of genes related to the neuroectodermal epithelial lineage (Epi-iBMEC). Overexpression of key endothelial ETS transcription factors (ETV2, ERG, and FLI1) reprograms Epi-iBMECs into authentic endothelial cells that are congruent with bona fide endothelium at both transcriptomic as well as some functional levels. This approach could eventually be used to develop a robust human BBB model in vitro that resembles the human brain EC in vivo for functional studies and drug discovery.
Asunto(s)
Endotelio Vascular/citología , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Animales , Barrera Hematoencefálica , Encéfalo/irrigación sanguínea , Encéfalo/citología , Diferenciación Celular , Línea Celular , Reprogramación Celular/fisiología , Endotelio Vascular/fisiología , Expresión Génica , Humanos , Ratones Endogámicos , Células Madre Pluripotentes/fisiología , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.
Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , MicroARNs , Ratones , Animales , Humanos , Adulto , Metiltransferasas/genética , Fosforilación/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , MicroARNs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismoRESUMEN
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Tubulina (Proteína) , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Ratones , Microtúbulos , Péptidos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismoRESUMEN
The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.
Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética/métodos , Heterocigoto , Homocigoto , Mutagénesis/genética , Mutación/genética , Adolescente , Edad de Inicio , Alelos , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Secuencia de Bases , Roturas del ADN de Doble Cadena , División del ADN , Reparación del ADN/genética , Femenino , Genes Dominantes/genética , Estudios de Asociación Genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Presenilinas/genética , ARN Guía de Kinetoplastida/genética , Homología de Secuencia , Especificidad por Sustrato , Moldes GenéticosRESUMEN
Production and isolation of forebrain interneuron progenitors are essential for understanding cortical development and developing cell-based therapies for developmental and neurodegenerative disorders. We demonstrate production of a population of putative calretinin-positive bipolar interneurons that express markers consistent with caudal ganglionic eminence identities. Using serum-free embryoid bodies (SFEBs) generated from human inducible pluripotent stem cells (iPSCs), we demonstrate that these interneuron progenitors exhibit morphological, immunocytochemical, and electrophysiological hallmarks of developing cortical interneurons. Finally, we develop a fluorescence-activated cell-sorting strategy to isolate interneuron progenitors from SFEBs to allow development of a purified population of these cells. Identification of this critical neuronal cell type within iPSC-derived SFEBs is an important and novel step in describing cortical development in this iPSC preparation.
Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiología , Cuerpos Embrioides/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Interneuronas/fisiología , Animales , Células Cultivadas , Fibroblastos/fisiología , Humanos , Ratones , Ratones NoqueadosRESUMEN
Understanding how high-risk individuals are protected from Alzheimer's disease (AD) may illuminate potential therapeutic targets. A previously identified non-coding SNP in SH3RF3/POSH2 significantly delayed disease onset in a Caribbean Hispanic cohort carrying the PSEN1 G206A mutation sufficient to cause early-onset AD and microglial expression of SH3RF3 has been reported to be a key driver of late-onset AD. SH3RF3 acts as a JNK pathway scaffold and can activate NFκB signaling. While effects of SH3RF3 knockdown in human neurons were subtle, including decreased phospho-tau S422, knockdown in human microglia significantly reduced inflammatory cytokines in response to either a viral mimic or oligomeric Aß42. This was associated with reduced activation of JNK and NFκB pathways in response to these stimuli. Pharmacological inhibition of JNK or NFκB signaling phenocopied SH3RF3 knockdown. We also found PSEN1 G206A microglia have reduced inflammatory responses to oAß42. Thus, further reduction of microglial inflammatory responses in PSEN1 mutant carriers by protective SNPs in SH3RF3 might reduce the link between amyloid and neuroinflammation to subsequently delay the onset of AD.
RESUMEN
The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. In vitro modeling of the human BBB is limited by the lack of robust hiPSC protocols to generate BMECs. Here, we report generation, transcriptomic and functional characterization of reprogrammed BMECs (rBMECs) by combining hiPSC differentiation into BBB-primed endothelial cells and reprogramming with two BBB transcription factors FOXF2 and ZIC3. rBMECs express a subset of the BBB gene repertoire including tight junctions and transporters, exhibit stronger paracellular barrier properties, lower caveolar-mediated transcytosis, and similar p-Glycoprotein activity compared to primary HBMECs. They can acquire an inflammatory phenotype when treated with oligomeric Aß42. rBMECs integrate with hiPSC-derived pericytes and astrocytes to form a 3D neurovascular system using the MIMETAS microfluidics platform. This novel 3D system resembles the in vivo BBB at structural and functional levels to enable investigation of pathogenic mechanisms of neurological diseases.
RESUMEN
Disease-associated microglia (DAM), initially described in mouse models of neurodegenerative diseases, have been classified into two related states; starting from a TREM2-independent DAM1 state to a TREM2 dependent state termed DAM2, with each state being characterized by the expression of specific marker genes1. Recently, single-cell (sc)RNA-Seq studies have reported the existence of DAMs in humans2-6; however, whether DAMs play beneficial or detrimental roles in the context of neurodegeneration is still under debate7,8. Here, we present a pharmacological approach to mimic human DAM in vitro by exposing different human microglia models to selected histone deacetylase (HDAC) inhibitors. We also provide an initial functional characterization of our model system, showing a specific increase of amyloid beta phagocytosis along with a reduction of MCP-1 secretion. Additionally, we report an increase in MITF expression, a transcription factor previously described to drive expression towards the DAM phenotype. We further identify CADM1, LIPA and SCIN as DAM-marker genes shared across various proposed DAM signatures and in our model systems. Overall, our strategy for targeted microglial polarization bears great potential to further explore human DAM function and biology.
RESUMEN
Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.
Asunto(s)
Demencia Frontotemporal , Neuronas , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Animales , Proteínas tau/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Microglía/metabolismo , Microglía/patología , Mutación/genéticaRESUMEN
While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.
RESUMEN
We report that Sh3rf2, a homologue of the pro-apoptotic scaffold POSH (Plenty of SH3s), acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway. siRNA-mediated knockdown of Sh3rf2 promotes apoptosis of neuronal PC12 cells, cultured cortical neurons, and C6 glioma cells. This death appears to result from activation of JNK signaling. Loss of Sh3rf2 triggers activation of JNK and its target c-Jun. Also, apoptosis promoted by Sh3rf2 knockdown is inhibited by dominant-negative c-Jun as well as by a JNK inhibitor. Investigation of the mechanism by which Sh3rf2 regulates cell survival implicates POSH, a scaffold required for activation of pro-apoptotic JNK/c-Jun signaling. In cells lacking POSH, Sh3rf2 knockdown is unable to activate JNK. We further find that Sh3rf2 binds POSH to reduce its levels by a mechanism that requires the RING domains of both proteins and that appears to involve proteasomal POSH degradation. Conversely, knockdown of Sh3rf2 promotes the stabilization of POSH protein and activation of JNK signaling. Finally, we show that endogenous Sh3rf2 protein rapidly decreases following several different apoptotic stimuli and that knockdown of Sh3rf2 activates the pro-apoptotic JNK pathway in neuronal cells. These findings support a model in which Sh3rf2 promotes proteasomal degradation of pro-apoptotic POSH in healthy cells and in which apoptotic stimuli lead to rapid loss of Sh3rf2 expression, and consequently to stabilization of POSH and JNK activation and cell death. On the basis of these observations, we propose the alternative name POSHER (POSH-eliminating RING protein) for the Sh3rf2 protein.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corteza Cerebral/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Activación Enzimática , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Células PC12 , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Transducción de Señal/fisiologíaRESUMEN
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
RESUMEN
Microtubules (MTs) support a variety of neuronal functions, such as maintenance of cell structure, transport, and synaptic plasticity. Neuronal MTs are highly heterogeneous due to several tubulin isotypes and the presence of multiple post-translational modifications, such as detyrosination and acetylation. The tubulin tyrosination/detyrosination cycle is a key player in the maintenance of MT dynamics, as tyrosinated tubulin is associated with more dynamic MTs, while detyrosinated tubulin is linked to longer lived, more stable MTs. Dysfunction of tubulin re-tyrosination was recently correlated to Alzheimer's disease progression. The implication of tubulin acetylation in Alzheimer's disease has, however, remained controversial. Here, we demonstrate that tubulin acetylation accumulates in post-mortem brain tissues from Alzheimer's disease patients and human neurons harboring the Alzheimer's familial APP-V717I mutation. We further show that tubulin re-tyrosination, which is defective in Alzheimer's disease, can control acetylated tubulin in primary neurons irrespective of the levels of the enzymes regulating tubulin acetylation, suggesting that reduced MT dynamics associated with impaired tubulin re-tyrosination might contribute to the accumulation of tubulin acetylation that we detected in Alzheimer's disease.
RESUMEN
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-ß 1-42 oligomers (Aß42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aß42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aß42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.
Asunto(s)
Enfermedad de Alzheimer , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Fragmentos de Péptidos , Sinapsis/metabolismoRESUMEN
Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with ß-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Peptidomiméticos , Humanos , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Neuronas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismoRESUMEN
It is essential to generate isolated populations of human neuronal subtypes in order to understand cell-type-specific roles in brain function and susceptibility to disease pathology. Here we describe a protocol for in-parallel generation of cortical glutamatergic (excitatory) and GABAergic (inhibitory) neurons from human pluripotent stem cells (hPSCs) by using the neurogenic transcription factors Ngn2 and a combination of Ascl1 and Dlx2, respectively. In contrast to the majority of neural transdifferentiation protocols that use transient lentiviral infection, the use of stable hPSC lines carrying doxycycline-inducible transcription factors allows neuronal differentiation to be initiated by addition of doxycycline and neural medium. This article presents a method to generate lentivirus from cultured mammalian cells and establish stable transcription factor-expressing cell lines (Basic Protocol 1), followed by a method for monolayer excitatory and inhibitory neuronal differentiation from the established lines (Basic Protocol 2). The resulting neurons reproducibly exhibit properties consistent with human cortical neurons, including the expected morphologies, expression of glutamatergic and GABAergic genes, and functional properties. Our approach enables the scalable and rapid production of human neurons suitable for modeling human brain diseases in a subtype-specific manner and examination of differential cellular vulnerability. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lentivirus production and generation of stable hPSC lines Support Protocol 1: Expansion and maintenance of hPSCs Basic Protocol 2: Differentiation of EX- and IN-neurons Support Protocol 2: Experimental methods for validation of EX- and IN-neurons.
Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Neurogénesis , NeuronasRESUMEN
Age-related neurodegenerative diseases are of critical concern to the general population and research/medical community due to their health impact and socioeconomic consequences. A feature of most, if not all, neurodegenerative disorders is the presence of proteinopathies, in which misfolded or conformationally altered proteins drive disease progression and are often used as a primary neuropathological marker of disease. In particular, Alzheimer's disease (AD) is characterized by abnormal accumulation of protein aggregates, primarily extracellular plaques composed of the Aß peptide and intracellular tangles comprised of the tau protein, both of which may indicate a primary defect in protein clearance. Protein degradation is a key cellular mechanism for protein homeostasis and is essential for cell survival but is disrupted in neurodegenerative diseases. Dysregulation in proteolytic pathways - mainly the autophagic-lysosomal system (A-LS) and the ubiquitin-proteasome system (UPS) - has been increasingly associated with proteinopathies in neurodegenerative diseases. Here we review the role of dysfunctional autophagy underlying AD-related proteinopathy and discuss how to model this aspect of disease, as well as summarize recent advances in translational strategies for targeted A-LS dysfunction in AD.