Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 10(1): e1004090, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453987

RESUMEN

The four-subunit Negative Elongation Factor (NELF) is a major regulator of RNA Polymerase II (Pol II) pausing. The subunit NELF-E contains a conserved RNA Recognition Motif (RRM) and is proposed to facilitate Poll II pausing through its association with nascent transcribed RNA. However, conflicting ideas have emerged for the function of its RNA binding activity. Here, we use in vitro selection strategies and quantitative biochemistry to identify and characterize the consensus NELF-E binding element (NBE) that is required for sequence specific RNA recognition (NBE: CUGAGGA(U) for Drosophila). An NBE-like element is present within the loop region of the transactivation-response element (TAR) of HIV-1 RNA, a known regulatory target of human NELF-E. The NBE is required for high affinity binding, as opposed to the lower stem of TAR, as previously claimed. We also identify a non-conserved region within the RRM that contributes to the RNA recognition of Drosophila NELF-E. To understand the broader functional relevance of NBEs, we analyzed promoter-proximal regions genome-wide in Drosophila and show that the NBE is enriched +20 to +30 nucleotides downstream of the transcription start site. Consistent with the role of NELF in pausing, we observe a significant increase in NBEs among paused genes compared to non-paused genes. In addition to these observations, SELEX with nuclear run-on RNA enrich for NBE-like sequences. Together, these results describe the RNA binding behavior of NELF-E and supports a biological role for NELF-E in promoter-proximal pausing of both HIV-1 and cellular genes.


Asunto(s)
VIH-1/genética , Motivos de Nucleótidos/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases/genética , Drosophila melanogaster/genética , Infecciones por VIH/genética , VIH-1/metabolismo , Humanos , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , ARN Polimerasa II/genética , Transcripción Genética
2.
Genome Res ; 20(12): 1679-88, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20855454

RESUMEN

TATA-binding protein (TBP) nucleates the assembly of the transcription preinitiation complex (PIC), and although TBP can bind promoters with high stability in vitro, recent results establish that virtually the entire TBP population is highly dynamic in yeast nuclei in vivo. This dynamic behavior is surprising in light of models that posit that a stable TBP-containing scaffold facilitates transcription reinitiation at active promoters. The dynamic behavior of TBP is a consequence of the enzymatic activity of the essential Snf2/Swi2 ATPase Mot1, suggesting that ensuring a highly mobile TBP population is critical for transcriptional regulation on a global scale. Here high-resolution tiling arrays were used to define how perturbed TBP dynamics impact the precision of RNA synthesis in Saccharomyces cerevisiae. We find that Mot1 plays a broad role in establishing the precision and efficiency of RNA synthesis: In mot1-42 cells, RNA length changes were observed for 713 genes, about twice the number observed in set2Δ cells, which display a previously reported propensity for spurious initiation within open reading frames. Loss of Mot1 led to both aberrant transcription initiation and termination, with prematurely terminated transcripts representing the largest class of events. Genetic and genomic analyses support the conclusion that these effects on RNA length are mechanistically tied to dynamic TBP occupancies at certain types of promoters. These results suggest a new model whereby dynamic disassembly of the PIC can influence productive RNA synthesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética/genética , Adenosina Trifosfatasas/genética , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/genética
3.
Genome Res ; 19(12): 2163-71, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801529

RESUMEN

The glucocorticoid steroid hormone cortisol is released by the adrenal glands in response to stress and serves as a messenger in circadian rhythms. Transcriptional responses to this hormonal signal are mediated by the glucocorticoid receptor (GR). We determined GR binding throughout the human genome by using chromatin immunoprecipitation followed by next-generation DNA sequencing, and measured related changes in gene expression with mRNA sequencing in response to the glucocorticoid dexamethasone (DEX). We identified 4392 genomic positions occupied by the GR and 234 genes with significant changes in expression in response to DEX. This genomic census revealed striking differences between gene activation and repression by the GR. While genes activated with DEX treatment have GR bound within a median distance of 11 kb from the transcriptional start site (TSS), the nearest GR binding for genes repressed with DEX treatment is a median of 146 kb from the TSS, suggesting that DEX-mediated repression occurs independently of promoter-proximal GR binding. In addition to the dramatic differences in proximity of GR binding, we found differences in the kinetics of gene expression response for induced and repressed genes, with repression occurring substantially after induction. We also found that the GR can respond to different levels of corticosteroids in a gene-specific manner. For example, low doses of DEX selectively induced PER1, a transcription factor involved in regulating circadian rhythms. Overall, the genome-wide determination and analysis of GR:DNA binding and transcriptional response to hormone reveals new insights into the complexities of gene regulatory activities managed by GR.


Asunto(s)
Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/citología , Pulmón/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Dexametasona/metabolismo , Genoma/efectos de los fármacos , Humanos , Pulmón/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
4.
Proc Natl Acad Sci U S A ; 105(36): 13304-8, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18765812

RESUMEN

Although pathways for assembly of RNA polymerase (Pol) II transcription preinitiation complexes (PICs) have been well established in vitro, relatively little is known about the dynamic behavior of Pol II general transcription factors in vivo. In vitro, a subset of Pol II factors facilitates reinitiation by remaining very stably bound to the promoter. This behavior contrasts markedly with the highly dynamic behavior of RNA Pol I transcription complexes in vivo, which undergo cycles of disassembly/reassembly at the promoter for each round of transcription. To determine whether the dynamic behavior of the Pol II machinery in vivo is fundamentally different from that of Pol I and whether the static behavior of Pol II factors in vitro fully recapitulates their behavior in vivo, we used fluorescence recovery after photobleaching (FRAP). Surprisingly, we found that all or nearly all of the TATA-binding protein (TBP) population is highly mobile in vivo, displaying FRAP recovery rates of <15 s. These high rates require the activity of the TBP-associated factor Mot1, suggesting that TBP/chromatin interactions are destabilized by active cellular processes. Furthermore, the distinguishable FRAP behavior of TBP and TBP-associated factor 1 indicates that there are populations of these molecules that are independent of one another. The distinct FRAP behavior of most Pol II factors that we tested suggests that transcription complexes assemble via stochastic multistep pathways. Our data indicate that active Pol II PICs can be much more dynamic than previously considered.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Mutación/genética , Fotoblanqueo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteína de Unión a TATA-Box/genética
5.
Mol Cell Biol ; 27(8): 2886-96, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17296733

RESUMEN

Mot1 is an essential, conserved, TATA-binding protein (TBP)-associated factor in Saccharomyces cerevisiae with well-established roles in the global control of RNA polymerase II (Pol II) transcription. Previous results have suggested that Mot1 functions exclusively in Pol II transcription, but here we report a novel role for Mot1 in regulating transcription by RNA polymerase I (Pol I). In vivo, Mot1 is associated with the ribosomal DNA, and loss of Mot1 results in decreased rRNA synthesis. Consistent with a direct role for Mot1 in Pol I transcription, Mot1 also associates with the Pol I promoter in vitro in a reaction that depends on components of the Pol I general transcription machinery. Remarkably, in addition to Mot1's role in initiation, rRNA processing is delayed in mot1 cells. Taken together, these results support a model in which Mot1 affects the rate and efficiency of rRNA synthesis by both direct and indirect mechanisms, with resulting effects on transcription activation and the coupling of rRNA synthesis to processing.


Asunto(s)
ADN Helicasas/metabolismo , ARN Ribosómico/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , ADN Ribosómico/ultraestructura , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , ARN Polimerasa I/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura , Secuencias Repetitivas de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción/metabolismo , Transcripción Genética
6.
J Biol Chem ; 284(7): 4525-35, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19098311

RESUMEN

Mot1 is an essential TATA-binding protein (TBP)-associated factor and Snf2/Swi2 ATPase that both represses and activates transcription. Biochemical and structural results support a model in which ATP binding and hydrolysis induce a conformational change in Mot1 that drives local translocation along DNA, thus removing TBP. Although this activity explains transcriptional repression, it does not as easily explain Mot1-mediated transcriptional activation, and several different models have been proposed to explain how Mot1 activates transcription. To better understand the function of Mot1 in yeast cells in vivo, particularly with regard to gene activation, TBP mutants were identified that bypass the requirement for Mot1 in vivo. Although TBP has been extensively mutated and analyzed previously, this screen uncovered two novel TBP variants that are unique in their ability to bypass the requirement for Mot1. Surprisingly, in vitro analyses reveal that rather than having acquired an improved biochemical activity, one of the TBPs was defective for interaction with polymerase II preinitiation complex (PIC) components and other regulators of TBP function. The other mutant was defective for DNA binding in vitro yet was still recruited to chromatin in vivo. These results suggest that Mot1-mediated dissociation of TBP (or TBP-containing complexes) from chromatin can explain the Mot1 activation mechanism at some promoters. The results also suggest that PICs can be dynamically unstable and that appropriate PIC instability is critical for the regulation of transcription in vivo.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa II/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transcripción Genética/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Cromatina/genética , ADN Helicasas/genética , ADN Polimerasa II/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Unión Proteica/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 283(36): 24935-48, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18606810

RESUMEN

Mot1 is an essential, conserved TATA-binding protein (TBP)-associated factor in Saccharomyces cerevisiae and a member of the Snf2/Swi2 ATPase family. Mot1 uses ATP hydrolysis to displace TBP from DNA, an activity that can be readily reconciled with its global role in gene repression. Less well understood is how Mot1 directly activates gene expression. It has been suggested that Mot1-mediated activation can occur by displacement of inactive TBP-containing complexes from promoters, thereby permitting assembly of functional transcription complexes. Mot1 may also activate transcription by other mechanisms that have not yet been defined. A gap in our understanding has been the absence of biochemical information related to the activity of Mot1 on natural target genes. Using URA1 as a model Mot1-activated promoter, we show striking differences in the way that both TBP and Mot1 interact with DNA compared with other model DNA substrates analyzed previously. These differences are due at least in part to the propensity of TBP alone to bind to the URA1 promoter in the wrong orientation to direct appropriate assembly of the URA1 preinitiation complex. The results suggest that Mot1-mediated activation of URA1 transcription involves at least two steps, one of which is the removal of TBP bound to the promoter in the opposite orientation required for URA1 transcription.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transcripción Genética/fisiología , Adenosina Trifosfatasas , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN de Hongos/química , ADN de Hongos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidrólisis , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína/fisiología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
EMBO J ; 25(7): 1492-504, 2006 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-16541100

RESUMEN

Mot1 is a conserved Snf2/Swi2-related transcriptional regulator that uses ATP hydrolysis to displace TATA-binding protein (TBP) from DNA. Several models of the enzymatic mechanism have been proposed, including Mot1-catalyzed distortion of TBP structure, competition between Mot1 and DNA for the TBP DNA-binding surface, and ATP-driven translocation of Mot1 along DNA. Here, DNase I footprinting studies provide strong support for a 'DNA-based' mechanism of Mot1, which we propose involves ATP-driven DNA translocation. Mot1 forms an asymmetric complex with the TBP core domain (TBPc)-DNA complex, contacting DNA both upstream and within the major groove of the TATA Box. Contact with upstream DNA is required for Mot1-mediated displacement of TBPc from DNA. Using the SsoRad54-DNA complex as a model, DNA-binding residues in Mot1 were identified that are critical for Mot1-TBPc-DNA complex formation and catalytic activity, thus placing Mot1 mechanistically within the helicase superfamily. We also report a novel ATP-independent TBPc displacement activity for Mot1 and describe conformational heterogeneity in the Mot1 ATPase, which is likely a general feature of other enzymes in this class.


Asunto(s)
ADN Helicasas/química , Proteínas de Unión al ADN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores Asociados con la Proteína de Unión a TATA/química , Proteína de Unión a TATA-Box/química , Factores de Transcripción/química , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , ADN/química , ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Modelos Moleculares , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/genética , Factores de Transcripción/genética
9.
EMBO J ; 24(9): 1717-29, 2005 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-15861138

RESUMEN

Mot1 is an essential Snf2/Swi2-related ATPase and TATA-binding protein (TBP)-associated factor (TAF). In vitro, Mot1 utilizes ATP hydrolysis to disrupt TBP-DNA complexes, but the relationship of this activity to Mot1's in vivo function is unclear. Chromatin immunoprecipitation was used to determine how Mot1 affects the assembly of preinitiation complexes (PICs) at Mot1-controlled promoters in vivo. We find that the Mot1-repressed HSP26 and INO1 promoters are both regulated by TBP recruitment; inactivation of Mot1 leads to increased PIC formation coincident with derepression of transcription. For the Mot1-activated genes BNA1 and URA1, inactivation of Mot1 also leads, remarkably, to increased TBP binding to the promoters, despite the fact that transcription of these genes is obliterated in mot1 cells. In contrast, levels of Taf1, TFIIB, and RNA polymerase II are reduced at Mot1-activated promoters in mot1 cells. These results suggest that Mot1-mediated displacement of TBP underlies its mechanism of repression and activation at these genes. We suggest that at activated promoters, Mot1 disassembles transcriptionally inactive TBP, thereby facilitating the formation of a TBP complex that supports functional PIC assembly.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética , Adenosina Trifosfatasas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Inmunoprecipitación de Cromatina , ADN Helicasas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Regiones Promotoras Genéticas , ARN de Hongos/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores de Transcripción/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA