Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 553: 51-57, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33756345

RESUMEN

The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) encodes a transcriptional repressor involved in the DNA-damage response. A SUMOylation increase on HIC1 Lysine314 favors the direct transcriptional repression of SIRT1 and thus the P53-dependent apoptotic response to irreparable DNA double strand breaks (DSBs). HIC1 is also essential for DSBs repair but in a SUMOylation-independent manner. Here, we show that repairable DSBs induced by a 1 h Etoposide treatment results in three specific posttranslational modifications (PTMs) of HIC1. Two of these PTMs, phosphorylation of Serine 694 and Acetylation of Lysine 623 are located in the conserved HIC1 C-terminal region located downstream of the Zinc Finger DNA-binding domain. By contrast, phosphorylation of Serine 285 found in the poorly conserved central region is unique to the human protein. We showed that Ser694 phosphorylation is mediated mainly by the PIKK kinase ATM and is essential for the DNA repair activity of HIC1 as demonstrated by the lack of efficiency of the S694A point mutant in Comet assays. Thus, our results provide the first evidence for a functional role of the conserved HIC1 C-terminal region as a novel ATM substrate that plays an essential role in the cellular HIC1-mediated cellular response to repairable DSBs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/metabolismo , Fosfoserina/metabolismo , Animales , Línea Celular , Ensayo Cometa , Secuencia Conservada , Daño del ADN , Humanos , Fosforilación
2.
Oncotarget ; 11(45): 4138-4154, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33227080

RESUMEN

HIC1 (Hypermethylated In Cancer 1) a tumor suppressor gene located at 17p13.3, is frequently deleted or epigenetically silenced in many human tumors. HIC1 encodes a transcriptional repressor involved in various aspects of the DNA damage response and in complex regulatory loops with P53 and SIRT1. HIC1 expression in normal prostate tissues has not yet been investigated in detail. Here, we demonstrated by immunohistochemistry that detectable HIC1 expression is restricted to the stroma of both normal and tumor prostate tissues. By RT-qPCR, we showed that HIC1 is poorly expressed in all tested prostate epithelial lineage cell types: primary (PrEC), immortalized (RWPE1) or transformed androgen-dependent (LnCAP) or androgen-independent (PC3 and DU145) prostate epithelial cells. By contrast, HIC1 is strongly expressed in primary PrSMC and immortalized (WMPY-1) prostate myofibroblastic cells. HIC1 depletion in WPMY-1 cells induced decreases in α-SMA expression and contractile capability. In addition to SLUG, we identified stromal cell-derived factor 1/C-X-C motif chemokine 12 (SDF1/CXCL12) as a new HIC1 direct target-gene. Thus, our results identify HIC1 as a tumor suppressor gene which is poorly expressed in the epithelial cells targeted by the tumorigenic process. HIC1 is expressed in stromal myofibroblasts and regulates CXCL12/SDF1 expression, thereby highlighting a complex interplay mediating the tumor promoting activity of the tumor microenvironment. Our studies provide new insights into the role of HIC1 in normal prostatic epithelial-stromal interactions through direct repression of CXCL12 and new mechanistic clues on how its loss of function through promoter hypermethylation during aging could contribute to prostatic tumors.

3.
Oncotarget ; 11(12): 1051-1074, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32256978

RESUMEN

Polycomb repressive complex 2 (PRC2) allows the deposition of H3K27me3. PRC2 facultative subunits modulate its activity and recruitment such as hPCL3/PHF19, a human ortholog of Drosophila Polycomb-like protein (PCL). These proteins contain a TUDOR domain binding H3K36me3, two PHD domains and a "Winged-helix" domain involved in GC-rich DNA binding. The human PCL3 locus encodes the full-length hPCL3L protein and a shorter isoform, hPCL3S containing the TUDOR and PHD1 domains only. In this study, we demonstrated by RT-qPCR analyses of 25 prostate tumors that hPCL3S is frequently up-regulated. In addition, hPCL3S is overexpressed in the androgen-independent DU145 and PC3 cells, but not in the androgen-dependent LNCaP cells. hPCL3S knockdown decreased the proliferation and migration of DU145 and PC3 whereas its forced expression into LNCaP increased these properties. A mutant hPCL3S unable to bind H3K36me3 (TUDOR-W50A) increased proliferation and migration of LNCaP similarly to wt hPCL3S whereas inactivation of its PHD1 domain decreased proliferation. These effects partially relied on the up-regulation of genes known to be important for the proliferation and/or migration of prostate cancer cells such as S100A16, PlexinA2, and Spondin1. Collectively, our results suggest hPCL3S as a new potential therapeutic target in castration resistant prostate cancers.

4.
Cancer Lett ; 385: 198-206, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-27780718

RESUMEN

Numerous genomic imprinting loci are regulated by long non-coding RNA (lncRNA). We have previously identified a new lncRNA at the H19/IGF2 locus transcribed in H19 antisense orientation and named 91H. This RNA is conserved among mammals. In mice, 91H regulates positively IGF2 expression from a novel promoter. However, in human the function of 91H at the H19/IGF2 locus remains largely undeciphered. Here, we observed that 91H, H19 and IGF2 are overexpressed in breast tumors. By using 91H-knockdown breast cancer cells, we demonstrated that 91H exerts oncogenic properties by promoting cell growth, migration and invasion as well as tumor growth in xenografted immunodeficient mouse model. Moreover, 91H-knockdown reduces the expression of H19 and IGF2 in breast cancer cells. By chromatin-immunoprecipitation and methylation studies, we found that 91H expression prevents histone and DNA methylation on the maternal allele at the H19/IGF2 locus. These results indicate that 91H, through epigenetic modifications, is responsible of the maintenance of H19/IGF2 genomic imprinting allowing the allele-specific expression of H19 and IGF2. Taken together, overexpression of 91H in breast cancer and 91H-induced epigenetic modifications on H19/IGF2 locus suggest that 91H may play essential role in breast cancer development. Further studies are needed to investigate their role in terms of diagnosis and therapeutic.


Asunto(s)
Neoplasias de la Mama/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/genética , ARN Largo no Codificante/genética , Anciano , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Metilación de ADN , Femenino , Predisposición Genética a la Enfermedad , Impresión Genómica , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica , Fenotipo , Interferencia de ARN , ARN Largo no Codificante/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral
5.
Oncotarget ; 8(2): 2916-2935, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27935866

RESUMEN

The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFßR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.


Asunto(s)
Apoptosis/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Factores de Transcripción de Tipo Kruppel/metabolismo , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Etopósido/farmacología , Histona Desacetilasas/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo , Sirtuina 1/genética , Sumoilación , Transactivadores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Stem Cells Dev ; 24(10): 1252-62, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25567531

RESUMEN

Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.


Asunto(s)
Genes Supresores de Tumor/fisiología , Células Madre Neoplásicas/citología , Regiones Promotoras Genéticas/genética , Próstata/citología , ARN Largo no Codificante/genética , Línea Celular , Humanos , Masculino , Neoplasias de la Próstata/genética , ARN Interferente Pequeño/genética , Factores de Transcripción/genética
7.
Oncotarget ; 6(30): 29209-23, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26353930

RESUMEN

H19 is a long non-coding RNA precursor of miR-675 microRNA. H19 is increasingly described to play key roles in the progression and metastasis of cancers from different tissue origins. We have previously shown that the H19 gene is activated by growth factors and increases breast cancer cell invasion. In this study, we established H19/miR-675 ectopic expression models of MDA-MB-231 breast cancer cells to further investigate the underlying mechanisms of H19 oncogenic action. We showed that overexpression of H19/miR-675 enhanced the aggressive phenotype of breast cancer cells including increased cell proliferation and migration in vitro, and increased tumor growth and metastasis in vivo. Moreover, we identified ubiquitin ligase E3 family (c-Cbl and Cbl-b) as direct targets of miR-675 in breast cancer cells. Using a luciferase assay, we demonstrated that H19, through its microRNA, decreased both c-Cbl and Cbl-b expression in all breast cancer cell lines tested. Thus, by directly binding c-Cbl and Cbl-b mRNA, miR-675 increased the stability and the activation of EGFR and c-Met, leading to sustained activation of Akt and Erk as well as enhanced cell proliferation and migration. Our data describe a novel mechanism of protumoral action of H19 in breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/enzimología , Carcinogénesis/metabolismo , Movimiento Celular , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Proliferación Celular , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones SCID , MicroARNs/genética , Metástasis de la Neoplasia , Fenotipo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
8.
Mol Cell Biol ; 28(22): 6731-45, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794369

RESUMEN

The H19/IGFf2 locus belongs to a large imprinted domain located on human chromosome 11p15.5 (homologue to mouse distal chromosome 7). The H19 gene is expressed from the maternal allele, while IGF2 is paternally expressed. Natural antisense transcripts and intergenic transcription have been involved in many aspects of eukaryotic gene expression, including genomic imprinting and RNA interference. However, apart from the identification of some IGF2 antisense transcripts, few data are available on that topic at the H19/IGF2 locus. We identify here a novel transcriptional activity at both the human and the mouse H19/IGF2 imprinted loci. This activity occurs antisense to the H19 gene and has the potential to produce a single 120-kb transcript that we called the 91H RNA. This nuclear and short-lived RNA is not imprinted in mouse but is expressed predominantly from the maternal allele in both mice and humans within the H19 gene region. Moreover, the transcript is stabilized in breast cancer cells and overexpressed in human breast tumors. Finally, knockdown experiments showed that, in humans, 91H, rather than affecting H19 expression, regulates IGF2 expression in trans.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/metabolismo , ARN sin Sentido/metabolismo , ARN no Traducido/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , ADN Intergénico/genética , Femenino , Impresión Genómica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Interferencia de ARN , ARN sin Sentido/genética , ARN Largo no Codificante , ARN no Traducido/genética , Transcripción Genética
9.
J Biol Chem ; 277(28): 25143-51, 2002 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-11991951

RESUMEN

To understand the role of the Ets-1 transcription factor during angiogenesis, we have overexpressed it in endothelial cells and analyzed the levels of expression of several candidate target genes involved in angiogenesis. The transcripts levels of the ETS transcription factor fli-1 are specifically up-regulated in endothelial cells, which overexpress Ets-1, but not in fibroblasts. Analysis of the promoter of the mouse fli-1 gene reveals that the 1-kb region that comprises the transcription starts and part of exon 1 is responsible for the response of the promoter to Ets-1. The -270/-41 fragment contains two known Spi-1-responding Ets binding sites (EBS), which are also necessary for the activation by Ets-1. In contrast to Spi-1, a third EBS is necessary for the full response of this promoter fragment to Ets-1. The rest of the promoter activity has been located in the -986/-505 region, where three active EBSs have been identified. Furthermore, endogenous Fli-1 was found to be bound to its own gene promoter and to be able to promote the transactivation of its gene. These results suggest that Ets-1 activates an auto-regulatory loop of expression of fli-1 in endothelial cells, a mechanism that could have significant implications for the endothelial cell fate.


Asunto(s)
Proteínas de Unión al ADN/genética , Endotelio/metabolismo , Regulación de la Expresión Génica/fisiología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/genética , Factores de Transcripción/fisiología , Células 3T3 , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Cartilla de ADN , Endotelio/citología , Ratones , Datos de Secuencia Molecular , Proteína Proto-Oncogénica c-ets-1 , Proteína Proto-Oncogénica c-fli-1 , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Factores de Transcripción/metabolismo
10.
EMBO J ; 22(21): 5700-11, 2003 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-14592969

RESUMEN

The recruitment and proliferation of smooth muscle cells and pericytes are two key events for the stabilization of newly formed capillaries during angiogenesis and, when out of control in the adult, are the main causes of arteriosclerosis. We have identified a novel gene, named VE-statin for vascular endothelial-statin, which is expressed specifically by endothelial cells of the developing mouse embryo and in the adult, and in early endothelial progenitors. The mouse and human VE-statin genes have been located on chromosome 2 and 9, respectively, they span >10 kbp and are transcribed in two major variants arising from independent initiation sites. The VE-statin transcripts code for a unique protein of 30 kDa that contains a signal peptide and two epidermal growth factor (EGF)-like modules. VE-statin is found in the cellular endoplasmic reticulum and secreted in the cell supernatant. Secreted VE-statin inhibits platelet-derived growth factor (PDGF)-BB-induced smooth muscle cell migration, but has no effects on endothelial cell migration. VE-statin is the first identified inhibitor of mural cell migration specifically produced by endothelial cells.


Asunto(s)
Factores de Crecimiento Endotelial/fisiología , Endotelio Vascular/fisiología , Inhibidores de Crecimiento/fisiología , Músculo Liso Vascular/citología , Proteínas/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio , División Celular , Línea Celular , Movimiento Celular , Células Cultivadas , Cromosomas Humanos Par 9/genética , Clonación Molecular , ADN Complementario/genética , Proteínas de Unión al ADN , Familia de Proteínas EGF , Factores de Crecimiento Endotelial/genética , Endotelio Vascular/crecimiento & desarrollo , Inhibidores de Crecimiento/genética , Humanos , Hibridación Fluorescente in Situ , Técnicas In Vitro , Factores de Transcripción de Tipo Kruppel , Ratones , Datos de Secuencia Molecular , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/fisiología , Neovascularización Fisiológica , Proteínas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA