Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 34(1): 535-556, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34609518

RESUMEN

Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstrating that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure.


Asunto(s)
Capsicum/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , Capsicum/genética , Proteínas de Homeodominio/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 101(3): 716-730, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571287

RESUMEN

Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA-sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user-friendly platform that can process raw RNA-sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree-based pipeline, rtp-star. We obtained time-course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp-star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild-type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell-type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non-bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators.


Asunto(s)
Arabidopsis/genética , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Transcriptoma , Algoritmos , Teorema de Bayes , Análisis de Secuencia de ARN
3.
Sci Adv ; 8(41): eabp9906, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240264

RESUMEN

Capturing cell-to-cell signals in a three-dimensional (3D) environment is key to studying cellular functions. A major challenge in the current culturing methods is the lack of accurately capturing multicellular 3D environments. In this study, we established a framework for 3D bioprinting plant cells to study cell viability, cell division, and cell identity. We established long-term cell viability for bioprinted Arabidopsis and soybean cells. To analyze the generated large image datasets, we developed a high-throughput image analysis pipeline. Furthermore, we showed the cell cycle reentry of bioprinted cells for which the timing coincides with the induction of core cell cycle genes and regeneration-related genes, ultimately leading to microcallus formation. Last, the identity of bioprinted Arabidopsis root cells expressing endodermal markers was maintained for longer periods. The framework established here paves the way for a general use of 3D bioprinting for studying cellular reprogramming and cell cycle reentry toward tissue regeneration.


Asunto(s)
Arabidopsis , Bioimpresión , Arabidopsis/genética , Supervivencia Celular , Células Vegetales , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
4.
Methods Mol Biol ; 2328: 47-65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34251619

RESUMEN

Gene expression data analysis and the prediction of causal relationships within gene regulatory networks (GRNs) have guided the identification of key regulatory factors and unraveled the dynamic properties of biological systems. However, drawing accurate and unbiased conclusions requires a comprehensive understanding of relevant tools, computational methods, and their workflows. The topics covered in this chapter encompass the entire workflow for GRN inference including: (1) experimental design; (2) RNA sequencing data processing; (3) differentially expressed gene (DEG) selection; (4) clustering prior to inference; (5) network inference techniques; and (6) network visualization and analysis. Moreover, this chapter aims to present a workflow feasible and accessible for plant biologists without a bioinformatics or computer science background. To address this need, TuxNet, a user-friendly graphical user interface that integrates RNA sequencing data analysis with GRN inference, is chosen for the purpose of providing a detailed tutorial.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Algoritmos , Secuencias de Aminoácidos/genética , Análisis por Conglomerados , Familia de Multigenes , RNA-Seq/métodos , Programas Informáticos , Análisis Espacio-Temporal , Flujo de Trabajo
5.
Quant Plant Biol ; 2: e2, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37077208

RESUMEN

Stem cells give rise to the entirety of cells within an organ. Maintaining stem cell identity and coordinately regulating stem cell divisions is crucial for proper development. In plants, mobile proteins, such as WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and SHORTROOT (SHR), regulate divisions in the root stem cell niche. However, how these proteins coordinately function to establish systemic behaviour is not well understood. We propose a non-cell autonomous role for WOX5 in the cortex endodermis initial (CEI) and identify a regulator, ANGUSTIFOLIA (AN3)/GRF-INTERACTING FACTOR 1, that coordinates CEI divisions. Here, we show with a multi-scale hybrid model integrating ordinary differential equations (ODEs) and agent-based modeling that quiescent center (QC) and CEI divisions have different dynamics. Specifically, by combining continuous models to describe regulatory networks and agent-based rules, we model systemic behaviour, which led us to predict cell-type-specific expression dynamics of SHR, SCARECROW, WOX5, AN3 and CYCLIND6;1, and experimentally validate CEI cell divisions. Conclusively, our results show an interdependency between CEI and QC divisions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA