Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366141

RESUMEN

Epilepsy is a severe neurological disorder that is usually diagnosed by using an electroencephalogram (EEG). However, EEG signals are complex, nonlinear, and dynamic, thus generating large amounts of data polluted by many artefacts, lowering the signal-to-noise ratio, and hampering expert interpretation. The traditional seizure-detection method of professional review of long-term EEG signals is an expensive, time-consuming, and challenging task. To reduce the complexity and cost of the task, researchers have developed several seizure-detection approaches, primarily focusing on classification systems and spectral feature extraction. While these methods can achieve high/optimal performances, the system may require retraining and following up with the feature extraction for each new patient, thus making it impractical for real-world applications. Herein, we present a straightforward manual/automated detection system based on the simple seizure feature amplification analysis to minimize these practical difficulties. Our algorithm (a simplified version is available as additional material), borrowing from the telecommunication discipline, treats the seizure as the carrier of information and tunes filters to this specific bandwidth, yielding a viable, computationally inexpensive solution. Manual tests gave 93% sensitivity and 96% specificity at a false detection rate of 0.04/h. Automated analyses showed 88% and 97% sensitivity and specificity, respectively. Moreover, our proposed method can accurately detect seizure locations within the brain. In summary, the proposed method has excellent potential, does not require training on new patient data, and can aid in the localization of seizure focus/origin.


Asunto(s)
Epilepsia , Procesamiento de Señales Asistido por Computador , Humanos , Convulsiones/diagnóstico , Electroencefalografía/métodos , Epilepsia/diagnóstico , Algoritmos
2.
Sensors (Basel) ; 19(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781869

RESUMEN

The Open-electroencephalography (EEG) framework is a popular platform to enable EEG measurements and general purposes Brain Computer Interface experimentations. However, the current platform is limited by the number of available channels and electrode compatibility. In this paper we present a fully configurable platform with up to 32 EEG channels and compatibility with virtually any kind of passive electrodes including textile, rubber and contactless electrodes. Together with the full hardware details, results and performance on a single volunteer participant (limited to alpha wave elicitation), we present the brain computer interface (BCI)2000 EEG source driver together with source code as well as the compiled (.exe). In addition, all the necessary device firmware, gerbers and bill of materials for the full reproducibility of the presented hardware is included. Furthermore, the end user can vary the dry-electrode reference circuitry, circuit bandwidth as well as sample rate to adapt the device to other generalized biopotential measurements. Although, not implemented in the tested prototype, the Biomedical Analogue to Digital Converter BIOADC naturally supports SPI communication for an additional 32 channels including the gain controller. In the appendix we describe the necessary modification to the presented hardware to enable this function.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Electroencefalografía/métodos , Electrodos , Diseño de Equipo , Humanos , Interfaz Usuario-Computador
3.
Sensors (Basel) ; 19(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652616

RESUMEN

Upper limb amputation is a condition that significantly restricts the amputees from performing their daily activities. The myoelectric prosthesis, using signals from residual stump muscles, is aimed at restoring the function of such lost limbs seamlessly. Unfortunately, the acquisition and use of such myosignals are cumbersome and complicated. Furthermore, once acquired, it usually requires heavy computational power to turn it into a user control signal. Its transition to a practical prosthesis solution is still being challenged by various factors particularly those related to the fact that each amputee has different mobility, muscle contraction forces, limb positional variations and electrode placements. Thus, a solution that can adapt or otherwise tailor itself to each individual is required for maximum utility across amputees. Modified machine learning schemes for pattern recognition have the potential to significantly reduce the factors (movement of users and contraction of the muscle) affecting the traditional electromyography (EMG)-pattern recognition methods. Although recent developments of intelligent pattern recognition techniques could discriminate multiple degrees of freedom with high-level accuracy, their efficiency level was less accessible and revealed in real-world (amputee) applications. This review paper examined the suitability of upper limb prosthesis (ULP) inventions in the healthcare sector from their technical control perspective. More focus was given to the review of real-world applications and the use of pattern recognition control on amputees. We first reviewed the overall structure of pattern recognition schemes for myo-control prosthetic systems and then discussed their real-time use on amputee upper limbs. Finally, we concluded the paper with a discussion of the existing challenges and future research recommendations.


Asunto(s)
Miembros Artificiales , Sistemas de Computación , Electromiografía , Mano/fisiología , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Humanos
4.
Biomed Res Int ; 2018: 9634184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30402497

RESUMEN

In developing countries, due to the high cost involved, amputees have limited access to prosthetic limbs. This constitutes a barrier for this people to live a normal life. To break this barrier, we are developing ultra-low-cost closed-loop myoactivated prostheses that are easy to maintain manufacture and that do not require electrodes in contact with the skin to work effectively. In this paper, we present the implementation for a simple but functional hand prosthesis. Our simple design consists of a low-cost embedded microcontroller (Arduino), a wearable stretch sensor (adapted from electroresistive bands normally used for "insulation of gaskets" against EM fields), to detect residual muscle contraction as direct muscle volumetric shifts and a handful of common, not critical electronic components. The physical prosthesis is a 3D printed claw-style two-fingered hand (PLA plastic) directly geared to an inexpensive servomotor. To make our design easier to maintain, the gears and mechanical parts can be crafted from recovered materials. To implement a closed loop, the amount of closure of prosthesis is fed back to the user via a second stretch sensor directly connected to claw under the form of haptic feedback. Our concept design comprised of all the parts has an overall cost below AUD 30 and can be easily scaled up to more complicated devices suitable for other uses, i.e., multiple individual fingers and wrist rotation.


Asunto(s)
Miembros Artificiales , Impresión Tridimensional , Diseño de Prótesis/métodos , Humanos , Diseño de Prótesis/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA