Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Small ; 19(29): e2207133, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36971296

RESUMEN

Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g-1 and an excellent energy density of 730 Wh kg-1 at 0.1 Ag-1 . In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag-1 . Moreover, the cathode charge-discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2- ( S 8 → S x 2 - → S 2 2 - + S 2 - ) ${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.

2.
Angew Chem Int Ed Engl ; 60(13): 7213-7219, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33381887

RESUMEN

The reversibility of metal anode is a fundamental challenge to the lifetime of rechargeable batteries. Though being widely employed in aqueous energy storage systems, metallic zinc suffers from dendrite formation that severely hinders its applications. Here we report texturing Zn as an effective way to address the issue of zinc dendrite. An in-plane oriented Zn texture with preferentially exposed (002) basal plane is demonstrated via a sulfonate anion-induced electrodeposition, noting no solid report on (002) textured Zn till now. Anion-induced reconstruction of zinc coordination is revealed to be responsible for the texture formation. Benchmarking against its (101) textured-counterpart by the conventional sulphate-based electrolyte, the Zn (002) texture enables highly reversible stripping/plating at a high current density of 10 mA cm-2 , showing its dendrite-free characteristics. The Zn (002) texture-based aqueous zinc battery exhibits excellent cycling stability. The developed anion texturing approach provides a pathway towards exploring zinc chemistry and prospering aqueous rechargeable batteries.

3.
J Am Chem Soc ; 142(36): 15295-15304, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786747

RESUMEN

Aqueous Al-ion batteries (AAIBs) are the subject of great interest due to the inherent safety and high theoretical capacity of aluminum. The high abundancy and easy accessibility of aluminum raw materials further make AAIBs appealing for grid-scale energy storage. However, the passivating oxide film formation and hydrogen side reactions at the aluminum anode as well as limited availability of the cathode lead to low discharge voltage and poor cycling stability. Here, we proposed a new AAIB system consisting of an AlxMnO2 cathode, a zinc substrate-supported Zn-Al alloy anode, and an Al(OTF)3 aqueous electrolyte. Through the in situ electrochemical activation of MnO, the cathode was synthesized to incorporate a two-electron reaction, thus enabling its high theoretical capacity. The anode was realized by a simple deposition process of Al3+ onto Zn foil substrate. The featured alloy interface layer can effectively alleviate the passivation and suppress the dendrite growth, ensuring ultralong-term stable aluminum stripping/plating. The architected cell delivers a record-high discharge voltage plateau near 1.6 V and specific capacity of 460 mAh g-1 for over 80 cycles. This work provides new opportunities for the development of high-performance and low-cost AAIBs for practical applications.

4.
Environ Sci Technol ; 54(15): 9681-9692, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32644805

RESUMEN

The development of environmentally benign hydrometallurgical processes to treat spent lithium-ion batteries (LIBs) is a critical aspect of the electronic-waste circular economy. Herein, as an alternative to the highly explosive H2O2, discarded orange peel powder (OP) is valorized as a green reductant for the leaching of industrially produced LIBs scraps in citric acid (H3Cit) lixiviant. The reductive potential of the cellulose- and antioxidant-rich OP was validated using the 3,5-dinitrosalicylic acid and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid assays. Leaching parameters such as OP concentration (200 mg), processing temperature (100 °C), H3Cit concentration (1.5 M), reaction duration (4 h), and slurry density (25 g/mL) were systematically optimized to achieve 80-99% leaching efficiencies of Ni, Mn, Co, and Li from the LIB "black mass". Importantly, solid side-streams generated by the OP-enabled leaching displayed negligible cytotoxicity in three different human cell lines, suggesting that the process is environmentally safe. As a proof of concept, Co(OH)2 was selectively recovered from the green lixiviant and subsequently utilized to fabricate new batches of LiCoO2 (LCO) coin cell batteries. Galvanostatic charge-discharge test revealed that the regenerated batteries exhibited initial charge and discharge values of 120 and 103 mAh/g, respectively, which is comparable to the performance of commercial LCO batteries. The use of fruit peel waste to recover valuable metals from spent LIBs is an effective, ecofriendly, and sustainable strategy to minimize the environmental footprint of both waste types.


Asunto(s)
Litio , Sustancias Reductoras , Suministros de Energía Eléctrica , Frutas , Peróxido de Hidrógeno , Reciclaje
5.
Langmuir ; 34(8): 2741-2747, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29425458

RESUMEN

Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (V3O7, VO2) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The V3O7@GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g-1 at 3000 mA g-1 vs 300 mAh g-1 at 100 mA g-1) due to the nanomorphology of the vanadium oxide.

6.
Phys Chem Chem Phys ; 20(46): 29412-29422, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30451268

RESUMEN

Sodium ion batteries (SIBs) based on IL electrolytes have attracted great attention, particularly in large-scale energy storage systems for renewable energy due to the abundance of sodium and the excellent safety resulting from the use of non-flammable ionic liquid (IL) electrolytes. In this article, a series of 15 functionalized room temperature ionic liquids (RTILs) suitable as electrolytes is presented. Special emphasis was laid on the purity of the synthesized RTILs and a consistent and uniform characterization of their physicochemical properties. Evaluation of the viscosity, conductivity, and thermal and electrochemical stabilities resulted in clear structure-property relationships, rendering the ether functionalized RTILs most promising for application in SIBs. Electrochemical investigations of the ether functionalized IL electrolytes in SIB half cells (Na0.6Mn0.9Co0.1O2 as cathode material) proved their compatibility with a SIB system. Stable cycling performance was achieved with the piperidinium based RTIL IL 6 outperforming the organic electrolyte by far with a retention of 81% after 350 cycles. These results show the suitability of RTILs to enhance the performance of SIB systems and serve as a basis for the design of high performance IL electrolytes.

7.
Phys Chem Chem Phys ; 19(4): 3358-3365, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28091628

RESUMEN

Polyoxometalates (POMs) have been reported as promising electrode materials for energy storage applications due to their ability to undergo fast redox reactions with multiple transferred electrons per polyanion. Here we employ a polyoxovanadate salt, Na6[V10O28], as an electrode material in a lithium-ion containing electrolyte and investigate the electron transfer properties of Na6[V10O28] on long and short timescales. Looking at equilibrated systems, in situ V K-edge X-ray absorption near edge structure (XANES) studies show that all 10 V5+ ions in Na6[V10O28] can be reversibly reduced to V4+ in a potential range of 4-1.75 V vs. Li/Li+. Focusing on the dynamic response of the electrode to potential pulses, the kinetics of Na6[V10O28] electrodes and the dependence of the fundamental electron transfer rate k0 on temperature are investigated. From these measurements we calculate the reorganization energy and compare it with theoretical predictions. The experimentally determined reorganization energy of λ = 184 meV is in line with the theoretical estimate and confirms the hypothesis of small values of λ for POMs due to electrostatic shielding of the redox center from the solvent.

8.
Chem Soc Rev ; 45(5): 1225-41, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26727278

RESUMEN

Tissue regeneration, energy conversion & storage, and water treatment are some of the most critical challenges facing humanity in the 21st century. In order to address such challenges, one-dimensional (1D) materials are projected to play a key role in developing emerging solutions for the increasingly complex problems. Eletrospinning technology has been demonstrated to be a simple, versatile, and cost-effective method in fabricating a rich variety of materials with 1D nanostructures. These include polymers, composites, and inorganic materials with unique chemical and physical properties. In this tutorial review, we first give a brief introduction to electrospun materials with a special emphasis on the design, fabrication, and modification of 1D functional materials. Adopting the perspective of chemists and materials scientists, we then focus on the recent significant progress made in the domains of tissue regeneration (e.g., skin, nerve, heart and bone) and conversion & storage of clean energy (e.g., solar cells, fuel cells, batteries, and supercapacitors), where nanofibres have been used as active nanomaterials. Furthermore, this review's scope also includes the advances in the use of electrospun materials for the removal of heavy metal ions, organic pollutants, gas and bacteria in water treatment applications. Finally a conclusion and perspective is provided, in which we discuss the remaining challenges for 1D electrospun nanomaterials in tissue regeneration, energy conversion & storage, and water treatment.


Asunto(s)
Transferencia de Energía , Nanofibras/química , Medicina Regenerativa , Purificación del Agua , Agua/química
9.
Small ; 11(20): 2429-36, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25604389

RESUMEN

Herein, the controlled synthesis of 3D hierarchical films on carbon cloth (CC) in a high yield through a hydrothermal process and their high photocatalytic properties are reported. As representative examples, the obtained ZnIn2 S4 /CdIn2 S4 composites are composed of porous nanosheets. During the hydrothermal process, l-cysteine plays an important dual role as a coordinating agent and sulfur source, which is in favor of adjusting stoichiometry of the final product and forming the nanoporous structure. This facile method can be extended to synthesize other sulfides and oxides on CC substrates, such as CoIn2 S4 , MnIn2 S4 , FeIn2 S4 , SnS2 , and Bi2 WO6 . When evaluated the photocatalytic activity, the optimized ZnIn2 S4 /CdIn2 S4 (20%)-CC with an easily recycling feature shows higher photocatalytic degradation activity for methylene blue (MB) than ZnIn2 S4 -CC, CdIn2 S4 -CC, and ZnIn2 S4 /CdIn2 S4 (20%) powder. More importantly, ZnIn2 S4 /CdIn2 S4 (20%)-CC also exhibits superior H2 production activity. The enhanced photocatalytic activity is attributed to the unique porous sheet-like structure and the formation of heterojunction. Our results could provide a promising way to develop high-performance photocatalytic films, which makes it possible to be used in real devices.

10.
Chemphyschem ; 15(10): 2121-8, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25044526

RESUMEN

Room-temperature sodium-ion batteries have the potential to become the technology of choice for large-scale electrochemical energy storage because of the high sodium abundance and low costs. However, not many materials meet the performance requirements for practical applications. Here, we report a novel sodium-ion battery electrode material, Na(2.55)V(6)O(16)⋅0.6 H(2)O, that shows significant capacities and stabilities at high current rates up to 800 mA g(-1). X-ray photoelectron spectroscopy measurements are carried out to better understand the underlying reactions. Moreover, due to the different oxidation states of vanadium, this material can also be employed in a symmetric full cell, which would decrease production costs even further. For these full cells, capacity and stability tests are conducted using various cathode:anode mass ratios.

11.
Chemphyschem ; 15(10): 2162-9, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24816786

RESUMEN

Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications.

12.
Angew Chem Int Ed Engl ; 53(46): 12594-9, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25297454

RESUMEN

Flexible three-dimensional (3D) nanoarchitectures have received tremendous interest recently because of their potential applications in wearable electronics, roll-up displays, and other devices. The design and fabrication of a flexible and robust electrode based on cobalt sulfide/reduced graphene oxide/carbon nanotube (CoS2 /RGO-CNT) nanocomposites are reported. An efficient hydrothermal process combined with vacuum filtration was used to synthesize such composite architecture, which was then embedded in a porous CNT network. This conductive and robust film is evaluated as electrocatalyst for the hydrogen evolution reaction. The synergistic effect of CoS2 , graphene, and CNTs leads to unique CoS2 /RGO-CNT nanoarchitectures, the HER activity of which is among the highest for non-noble metal electrocatalysts, showing 10 mA cm(-2) current density at about 142 mV overpotentials and a high electrochemical stability.

13.
Chemistry ; 19(44): 14823-30, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24591215

RESUMEN

Hierarchical CaCo2O4 nanofibers (denoted as CCO-NFs) with a unique hierarchical structure have been prepared by a facile electrospinning method and subsequent calcination in air. The as-prepared CCO-NFs are composed of well-defined ultrathin nanoplates that arrange themselves in an oriented manner to form one-dimensional (1D) hierarchical structures. The controllable formation process and possible formation mechanism are also discussed. Moreover, as a demonstration of the functional properties of such hierarchical architecture, the 1D hierarchical CCO-NFs were investigated as materials for lithium-ion batteries (LIBs) anode; they not only delivers a high reversible capacity of 650 mAh g(-1) at a current of 100 mA g(-1) and with 99.6% capacity retention over 60 cycles, but they also show excellent rate capability with respect to counterpart nanoplates-in-nanofibers and nanoplates. The high specific surface areas as well as the unique feature of hierarchical structures are probably responsible for the enhanced electrochemical performance. Considering their facile preparation and good lithium storage properties, 1D hierarchical CCO-NFs will hold promise in practical LIBs.

14.
Chemistry ; 19(19): 5892-8, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23494864

RESUMEN

Novel, porous NiCo2O4 nanotubes (NCO-NTs) are prepared by a single-spinneret electrospinning technique followed by calcination in air. The obtained NCO-NTs display a one-dimensional architecture with a porous structure and hollow interiors. The effect of precursor concentration on the morphologies of the products is investigated. Due to their unique structure, the prepared NCO-NT electrode exhibits a high specific capacitance (1647 F g(-1) at 1 A g(-1)), excellent rate capability (77.3 % capacity retention at 25 A g(-1)), and outstanding cycling stability (6.4 % loss after 3000 cycles), which indicates it has great potential for high-performance electrochemical capacitors. The desirable enhanced capacitive performance of NCO-NTs can be attributed to the relatively large specific surface area of these porous and hollow one-dimensional nanostructures.

15.
ChemSusChem ; 16(17): e202202297, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37424157

RESUMEN

Solid-state zinc ion batteries (ZIBs) and aluminum-ion batteries (AIBs) are deemed as promising candidates for supplying power in wearable devices due to merits of low cost, high safety, and tunable flexibility. However, their wide-scale practical application is limited by various challenges, down to the material level. This Review begins with elaboration of the root causes and their detrimental effect for four main limitations: electrode-electrolyte interface contact, electrolyte ionic conductivity, mechanical strength, and electrochemical stability window of the electrolyte. Thereafter, various strategies to mitigate each of the described limitation are discussed along with future research direction perspectives. Finally, to estimate the viability of these technologies for wearable applications, economic-performance metrics are compared against Li-ion batteries.

16.
Adv Sci (Weinh) ; 10(8): e2206469, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36646504

RESUMEN

Novel electrolyte is being pursued toward exploring Zn chemistry in zinc ion batteries. Here, a fluorine-free liquid crystal (LC) ionomer-type zinc electrolyte is presented, achieving simultaneous regulated water activity and long-range ordering of conduction channels and SEI. Distinct from water network or local ordering in current advances, long-range ordering of layered water channels is realized. Via manipulating water activity, conductivities range from ≈0.34 to 15 mS cm-1 , and electrochemical window can be tuned from ≈2.3-4.3 V. The Zn|Zn symmetric cell with LC gel exhibits highly reversible Zn stripping/plating at 5 mA cm-2 and 5 mAh cm-2 for 800 h, with retained ordering of water channels. The capability of gel for inducing in situ formation of long-range ordered layer SEI associated with alkylbenzene sulfonate anion is uncovered. V2 O5 /Zn cell with the gel shows much improved cycling stability comparing to conventional zinc electrolytes, where the preserved structure of V2 O5 is associated with the efficiently stabilized Zn anode by the gel. Via long-range ordering-induced regulation on ion transport, electrochemical stability, and interfacial reaction, the development of LC electrolyte provides a pathway toward advancing aqueous rechargeable batteries.

17.
Adv Mater ; 34(25): e2101474, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34490683

RESUMEN

Lithium-ion batteries (LIBs) are vital energy-storage devices in modern society. However, the performance and cost are still not satisfactory in terms of energy density, power density, cycle life, safety, etc. To further improve the performance of batteries, traditional "trial-and-error" processes require a vast number of tedious experiments. Computational chemistry and artificial intelligence (AI) can significantly accelerate the research and development of novel battery systems. Herein, a heterogeneous category of AI technology for predicting and discovering battery materials and estimating the state of the battery system is reviewed. Successful examples, the challenges of deploying AI in real-world scenarios, and an integrated framework are analyzed and outlined. The state-of-the-art research about the applications of ML in the property prediction and battery discovery, including electrolyte and electrode materials, are further summarized. Meanwhile, the prediction of battery states is also provided. Finally, various existing challenges and the framework to tackle the challenges on the further development of machine learning for rechargeable LIBs are proposed.

18.
Sci Total Environ ; 807(Pt 3): 151085, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34749966

RESUMEN

Reuse of electronic wastes is a critical aspect for a more sustainable circular economy as it provides the simplest and most direct route to extend the lifespan of non-renewable resources. Herein, the distinctive surface and micro topographical features of computer electronic-plastic (E-plastic) scraps were unconventionally repurposed as a substrate material to guide the growth and differentiation of human adipose-derived mesenchymal stem cells (ADSCs). Specifically, the E-plastics were scavenged from discarded computer components such as light diffuser plate (polyacrylates), prismatic sheet (polyethylene terephthalate), and keyboards (acrylonitrile butadiene styrene) were cleaned, sterilized, and systematically characterized to determine the identity of the plastics, chemical constituents, surface features, and leaching characteristics. Multiparametric analysis revealed that all the E-plastics could preserve stem-cell phenotype and maintain cell growth over 2 weeks, rivalling the performance of commercial tissue-culture treated plates as cell culture plastics. Interestingly, compared to commercial tissue-culture treated plastics and in a competitive adipogenic and osteogenic differentiation environment, ADSCs cultured on the keyboard and light diffuser plastics favoured bone cells formation while the grating-like microstructures of the prismatic sheet promoted fat cells differentiation via the process of contact guidance. Our findings point to the real possibility of utilizing discarded computer plastics as a "waste-to-resource" material to programme stem cell fate without further processing nor biochemical modification, thus providing an innovative second-life option for E-plastics from personal computers.


Asunto(s)
Osteogénesis , Plásticos , Diferenciación Celular , Computadores , Electrónica , Humanos , Células Madre
19.
Adv Mater ; 34(25): e2103346, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34632652

RESUMEN

E-waste generated from end-of-life spent lithium-ion batteries (LIBs) is increasing at a rapid rate owing to the increasing consumption of these batteries in portable electronics, electric vehicles, and renewable energy storage worldwide. On the one hand, landfilling and incinerating LIBs e-waste poses environmental and safety concerns owing to their constituent materials. On the other hand, scarcity of metal resources used in manufacturing LIBs and potential value creation through the recovery of these metal resources from spent LIBs has triggered increased interest in recycling spent LIBs from e-waste. State of the art recycling of spent LIBs involving pyrometallurgy and hydrometallurgy processes generates considerable unwanted environmental concerns. Hence, alternative innovative approaches toward the green recycling process of spent LIBs are essential to tackle large volumes of spent LIBs in an environmentally friendly way. Such evolving techniques for spent LIBs recycling based on green approaches, including bioleaching, waste for waste approach, and electrodeposition, are discussed here. Furthermore, the ways to regenerate strategic metals post leaching, efficiently reprocess extracted high-value materials, and reuse them in applications including electrode materials for new LIBs. The concept of "circular economy" is highlighted through closed-loop recycling of spent LIBs achieved through green-sustainable approaches.


Asunto(s)
Residuos Electrónicos , Litio , Suministros de Energía Eléctrica , Iones , Metales , Reciclaje
20.
ChemSusChem ; 15(19): e202200978, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35920173

RESUMEN

The massive adoption of renewable energy especially photovoltaic (PVs) panels is expected to create a huge waste stream once they reach end-of-life (EoL). Despite having the highest embodied energy, present photovoltaic recycling neglects the high purity silicon found in the PV cell. Herein, a scalable and low energy process is developed to recover pristine silicon from EoL solar panel through a method which avoids energy-intensive high temperature processes. The extracted silicon was upcycled to form lithium-ion battery anodes with performances comparable to as-purchased silicon. The anodes retained 87.5 % capacity after 200 cycles while maintaining high coulombic efficiency (>99 %) at 0.5 A g-1 charging rate. This simple and scalable process to upcycle EoL-solar panels into high value silicon-based anodes can narrow the gap towards a net-zero waste economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA