Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 613(7945): 721-728, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450355

RESUMEN

The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , Aptitud Genética , Bacterias Gramnegativas , Bacterias Grampositivas , Fosfatos de Poliisoprenilo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Lípidos/análisis , Peptidoglicano/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/química , Bacterias Grampositivas/citología , Bacterias Grampositivas/metabolismo , Viabilidad Microbiana
2.
Nature ; 556(7699): 118-121, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590088

RESUMEN

The shape, elongation, division and sporulation (SEDS) proteins are a large family of ubiquitous and essential transmembrane enzymes with critical roles in bacterial cell wall biology. The exact function of SEDS proteins was for a long time poorly understood, but recent work has revealed that the prototypical SEDS family member RodA is a peptidoglycan polymerase-a role previously attributed exclusively to members of the penicillin-binding protein family. This discovery has made RodA and other SEDS proteins promising targets for the development of next-generation antibiotics. However, little is known regarding the molecular basis of SEDS activity, and no structural data are available for RodA or any homologue thereof. Here we report the crystal structure of Thermus thermophilus RodA at a resolution of 2.9 Å, determined using evolutionary covariance-based fold prediction to enable molecular replacement. The structure reveals a ten-pass transmembrane fold with large extracellular loops, one of which is partially disordered. The protein contains a highly conserved cavity in the transmembrane domain, reminiscent of ligand-binding sites in transmembrane receptors. Mutagenesis experiments in Bacillus subtilis and Escherichia coli show that perturbation of this cavity abolishes RodA function both in vitro and in vivo, indicating that this cavity is catalytically essential. These results provide a framework for understanding bacterial cell wall synthesis and SEDS protein function.


Asunto(s)
Cristalografía por Rayos X/métodos , Nucleotidiltransferasas/química , Peptidoglicano/metabolismo , Thermus thermophilus/enzimología , Bacillus subtilis/genética , Biocatálisis , Pared Celular/enzimología , Pared Celular/metabolismo , Escherichia coli/genética , Modelos Moleculares , Nucleotidiltransferasas/metabolismo , Dominios Proteicos , Pliegue de Proteína , Relación Estructura-Actividad , Thermus thermophilus/genética
3.
Antimicrob Agents Chemother ; 67(11): e0076423, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37843261

RESUMEN

In a looming post-antibiotic era, antibiotic alternatives have become key players in the combat against pathogens. Although recent advances in genomic research allow scientists to fully explore an organism's genome in the search for novel antibacterial molecules, laborious work is still needed in order to dissect each individual gene product for its antibacterial activity. Here, we exploited phage-induced bacterial morphological changes as anchors to explore and discover a potential phage-derived antimicrobial embedded in the phage genome. We found that, upon vibriophage KVP40 infection, Vibrio parahaemolyticus exhibited morphological changes similar to those observed when treated with mecillinam, a cell wall synthesis inhibitor, suggesting the mechanism of pre-killing that KVP40 exerts inside the bacterial cell upon sieging the host. Genome analysis revealed that, of all the annotated gene products in the KVP40 genome that are involved in cell wall degradation, lytic transglycosylase (LT) is of particular interest for subsequent functional studies. A single-cell morphological analysis revealed that heterologous expression of wild-type KVP40-LT induced similar bacterial morphological changes to those treated with the whole phage or mecillinam, prior to cell burst. On the contrary, neither the morphology nor the viability of the bacteria expressing signal-peptide truncated- or catalytic mutant E80A- KVP40-LT was affected, suggesting the necessity of these domains for the antibacterial activities. Altogether, this research paves the way for the future development of the discovery of phage-derived antimicrobials that is guided through phage-induced morphological changes.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Vibrio parahaemolyticus , Bacteriófagos/genética , Antibacterianos/farmacología , Amdinocilina
4.
PLoS Genet ; 14(10): e1007726, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30335755

RESUMEN

Cell elongation in rod-shaped bacteria is mediated by the Rod system, a conserved morphogenic complex that spatially controls cell wall assembly by the glycan polymerase RodA and crosslinking enzyme PBP2. Using Escherichia coli as a model system, we identified a PBP2 variant that promotes Rod system function when essential accessory components of the machinery are inactivated. This PBP2 variant hyperactivates cell wall synthesis in vivo and stimulates the activity of RodA-PBP2 complexes in vitro. Cells with the activated synthase also exhibited enhanced polymerization of the actin-like MreB component of the Rod system. Our results define an activation pathway governing Rod system function in which PBP2 conformation plays a central role in stimulating both glycan polymerization by its partner RodA and the formation of cytoskeletal filaments of MreB to orient cell wall assembly. In light of these results, previously isolated mutations that activate cytokinesis suggest that an analogous pathway may also control cell wall synthesis by the division machinery.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Actinas/metabolismo , Proteínas Bacterianas/genética , Ciclo Celular , Pared Celular/metabolismo , Citocinesis/fisiología , Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Morfogénesis , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/metabolismo , Polimerizacion , Polisacáridos/biosíntesis
5.
Nat Chem Biol ; 14(6): 601-608, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29662210

RESUMEN

Identifying targets of antibacterial compounds remains a challenging step in the development of antibiotics. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures identified from directional biases in insertions revealed known molecular targets and resistance mechanisms for the majority of these. Because single-gene upregulation does not always confer resistance, we used a complementary machine-learning approach to predict the mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating the antibiotic mechanism of action.


Asunto(s)
Antibacterianos/química , Biblioteca de Genes , Lípidos/química , Staphylococcus aureus/química , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Pared Celular , Biología Computacional , Elementos Transponibles de ADN , Genoma Bacteriano , Lysobacter , Aprendizaje Automático , Mutación , Péptidos Cíclicos/química , Regulación hacia Arriba , Uridina Difosfato Ácido N-Acetilmurámico/química
6.
Nat Chem Biol ; 13(7): 793-798, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28553948

RESUMEN

Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. ß-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by ß-lactams have been hampered by lack of access to a suitable substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate the utility of this strategy by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2 (PBP2), which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different ß-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Lípidos/química , Peptidil Transferasas/antagonistas & inhibidores , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , beta-Lactamas/farmacología , Proteínas Bacterianas/aislamiento & purificación , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Estructura Molecular , Proteínas de Unión a las Penicilinas/química , Peptidil Transferasas/metabolismo , beta-Lactamas/química
7.
J Am Chem Soc ; 139(29): 9791-9794, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28691491

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections are a global public health problem. MRSA strains have acquired a non-native penicillin-binding protein called PBP2a that cross-links peptidoglycan when the native S. aureus PBPs are inhibited by ß-lactams. It has been proposed that the native S. aureus PBPs can use cell wall precursors having different glycine branch lengths (penta-, tri-, or monoglycine), while PBP2a can only cross-link peptidoglycan strands bearing a complete pentaglycine branch. This hypothesis has never been tested because the necessary substrates have not been available. Here, we compared the ability of PBP2a and two native S. aureus transpeptidases to cross-link peptidoglycan strands bearing different glycine branches. We show that purified PBP2a can cross-link glycan strands bearing penta- and triglycine, but not monoglycine, and experiments in cells provide support for these findings. Because PBP2a cannot cross-link peptidoglycan containing monoglycine, this study implicates the enzyme (FemA) that extends the monoglycine branch to triglycine on Lipid II as an ideal target for small molecules that restore sensitivity of MRSA to ß-lactams.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , beta-Lactamas/farmacología , Antibacterianos/farmacología , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Estructura Molecular , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/química , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo
8.
J Am Chem Soc ; 138(1): 100-3, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26683668

RESUMEN

Lysobactin, also known as katanosin B, is a potent antibiotic with in vivo efficacy against Staphylococcus aureus and Streptococcus pneumoniae. It was previously shown to inhibit peptidoglycan (PG) biosynthesis, but its molecular mechanism of action has not been established. Using enzyme inhibition assays, we show that lysobactin forms 1:1 complexes with Lipid I, Lipid II, and Lipid II(A)(WTA), substrates in the PG and wall teichoic acid (WTA) biosynthetic pathways. Therefore, lysobactin, like ramoplanin and teixobactin, recognizes the reducing end of lipid-linked cell wall precursors. We show that despite its ability to bind precursors from different pathways, lysobactin's cellular mechanism of killing is due exclusively to Lipid II binding, which causes septal defects and catastrophic cell envelope damage.


Asunto(s)
Depsipéptidos/fisiología , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/metabolismo , Microscopía Electrónica de Transmisión
9.
Nat Commun ; 13(1): 5994, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220828

RESUMEN

Post-transcriptional RNA editing modulates gene expression in a condition-dependent fashion. We recently discovered C-to-Ψ editing in Vibrio cholerae tRNA. Here, we characterize the biogenesis, regulation, and functions of this previously undescribed RNA editing process. We show that an enzyme, TrcP, mediates the editing of C-to-U followed by the conversion of U to Ψ, consecutively. AlphaFold-2 predicts that TrcP consists of two globular domains (cytidine deaminase and pseudouridylase) and a long helical domain. The latter domain tethers tRNA substrates during both the C-to-U editing and pseudouridylation, likely enabling a substrate channeling mechanism for efficient catalysis all the way to the terminal product. C-to-Ψ editing both requires and suppresses other modifications, creating an interdependent network of modifications in the tRNA anticodon loop that facilitates coupling of tRNA modification states to iron availability. Our findings provide mechanistic insights into an RNA editing process that likely promotes environmental adaptation.


Asunto(s)
Anticodón , Seudouridina , Citidina/metabolismo , Citidina Desaminasa/genética , Hierro , Seudouridina/metabolismo , ARN de Transferencia/metabolismo
10.
Curr Opin Microbiol ; 57: 41-48, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32663792

RESUMEN

Transfer RNAs (tRNAs) are non-coding RNAs essential for protein synthesis. tRNAs are heavily decorated with a variety of post-transcriptional modifications (tRNA modifications). Recent methodological advances provide new tools for rapid profiling of tRNA modifications and have led to discoveries of novel modifications and their regulation. Here, we provide an overview of the techniques for investigating tRNA modifications and of the expanding knowledge of their chemistry and regulation.


Asunto(s)
Bacterias/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Bacterias/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA