Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Anal Chem ; 96(28): 11121-11125, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38949250

RESUMEN

Applications involving two-photon activation, including two-photon fluorescence imaging, photodynamic therapy, and 3D data storage, require precise knowledge of the two-photon absorption (2PA) spectra of target chromophores. Broadband pump-probe spectroscopy using femtosecond laser pulses provides wavelength-dependent 2PA spectra with absolute cross sections, but the measurements are sometimes complicated by cross-phase modulation effects and dispersion of the broadband probe. Here, we introduce a single-shot approach that eliminates artifacts from cross-phase modulation and enables more rapid measurements by avoiding the need to scan the time delay between the pump and the probe pulses. The approach uses counterpropagating beams to automatically integrate over the full interaction between the two pulses as they cross. We demonstrate this single-shot approach for a common 2PA reference, coumarin 153 (C153), in three different solvents using the output from a Yb:KGW laser. This approach provides accurate 2PA cross sections that are more reliable and easier to obtain compared with scanning pump-probe methods using copropagating laser beams. The single-shot method for broadband two-photon absorption (BB-2PA) spectroscopy also has significant advantages compared with single-wavelength measurements, such as z-scan and two-photon fluorescence.

2.
Anal Chem ; 95(35): 13227-13234, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37603818

RESUMEN

Two-photon absorption (2PA) spectroscopy provides valuable information about the nonlinear properties of molecules. In contrast with single-wavelength methods, broadband 2PA spectroscopy using a pump-probe approach gives a continuous 2PA spectrum across a wide range of transition energies without tuning the excitation laser. This contribution shows how stimulated Raman scattering from the solvent can be used as a convenient and robust internal standard for obtaining accurate absolute 2PA cross sections using the broadband approach. Stimulated Raman scattering has the same pump-probe overlap dependence as 2PA, thus eliminating the need to measure the intensity-dependent overlap of the pump and probe directly. Eliminating the overlap represents an important improvement because intensity profiles are typically the largest source of uncertainty in the measurement of absolute 2PA cross sections using any method. Raman scattering cross sections are a fundamental property of the solvent and therefore provide a universal standard that can be applied any time the 2PA and Raman signals are present within the same probe wavelength range. We demonstrate this approach using sample solutions of coumarin 153 in methanol, DMSO, and toluene, as well as fluorescein in water.

3.
Anal Chem ; 92(15): 10686-10692, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32598135

RESUMEN

Broadband stimulated Raman scattering (SRS) is often observed in applications that use nonlinear spectroscopy to probe the composition or dynamics of complex systems. Whether the SRS response is measured intentionally or unintentionally, as a background signal, the relative scattering intensities provide a quantitative measure of the population profile of target molecules. Solvent scattering is a valuable internal reference for determining absolute concentrations in these applications, but accurate cross sections have been reported for only a limited number of transitions in select solvents and were measured using spontaneous Raman scattering with narrowband continuous wave or nanosecond light sources. This work reports the measurement and analysis of absolute Raman scattering cross sections spanning the frequency range of 500-4000 cm-1 for cyclohexane, DMSO, acetonitrile, methanol, water, benzene, and toluene using broadband SRS with femtosecond and picosecond Raman pump pulses at 488 nm. Varying the duration of the Raman pump pulses from ∼80 fs to >1 ps confirms that the cross sections are independent of the spectral bandwidth across the range of ∼250 to <20 cm-1. The cross sections and depolarization ratios measured using broadband SRS agree with the limited number of previously reported values, after accounting for overlapping transitions in the lower-resolution femtosecond and picosecond spectra. The SRS cross sections reported here can be used with confidence as internal reference standards for a wide range of applications, including nonlinear spectroscopy and coherent microscopy measurements using ultrafast lasers.

4.
Nanoscale ; 16(11): 5601-5612, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38411615

RESUMEN

Ruthenium-based metal complexes are one of the most widely studied dyes because of their rich photochemistry and light-harvesting properties. Significant attention has been paid to the energy and charge transfer dynamics of these dyes on semiconductor substrates. However, studies on photophysical and photochemical properties of these dyes in plasmonic environments are rare. In this study, we report a plasmon-mediated resonance energy transfer in an optimized oligomer system that enhances the photoexcited population of the well known dye, tris(2,2'-bipyridine)ruthenium(II), [Ru(BPY)3]2+ adsorbed on gold nanosphere surfaces with a defluorescenced Raman signal. Structural and chemical information is collected using a range of techniques that include in situ time-resolved UV/VIS, DLS, SERS, and TA. The findings have great potential to impact nanoscience broadly with special emphasis on surface photocatalysis, redox chemistry, and solar energy harvesting.

5.
Biosens Bioelectron ; 239: 115604, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607448

RESUMEN

Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.


Asunto(s)
Técnicas Biosensibles , Microscopía , Humanos , Colorantes Fluorescentes , Células HeLa , Permeabilidad de la Membrana Celular , Mitomicina
6.
ACS Omega ; 3(10): 12737-12745, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458000

RESUMEN

The utility of a chiral Ru-prolinamide catalytic system has been demonstrated in one-pot synthesis of optically active ß-triazolylethanol and ß-hydroxy sulfone derivatives. The said methodology proceeds through asymmetric transfer hydrogenation of in situ formed ketones of the corresponding chiral products. Various chiral prolinamide ligands were screened, and ligand L6 with isopropyl groups substituted at the ortho position has shown excellent activity at 60 °C in aqueous medium producing up to 95% yield and 99.9% enantioselectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA