Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782129

RESUMEN

Meprin ß (Mß) is a multidomain type-I membrane metallopeptidase that sheds membrane-anchored substrates, releasing their soluble forms. Fetuin-B (FB) is its only known endogenous protein inhibitor. Herein, we analyzed the interaction between the ectodomain of Mß (MßΔC) and FB, which stabilizes the enzyme and inhibits it with subnanomolar affinity. The MßΔC:FB crystal structure reveals a ∼250-kDa, ∼160-Å polyglycosylated heterotetrameric particle with a remarkable glycan structure. Two FB moieties insert like wedges through a "CPDCP trunk" and two hairpins into the respective peptidase catalytic domains, blocking the catalytic zinc ions through an "aspartate switch" mechanism. Uniquely, the active site clefts are obstructed from subsites S4 to S10', but S1 and S1' are spared, which prevents cleavage. Modeling of full-length Mß reveals an EGF-like domain between MßΔC and the transmembrane segment that likely serves as a hinge to transit between membrane-distal and membrane-proximal conformations for inhibition and catalysis, respectively.


Asunto(s)
Fetuína-B/química , Metaloendopeptidasas/química , Animales , Sitios de Unión , Línea Celular , Fetuína-B/metabolismo , Humanos , Lepidópteros , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica
2.
BMC Biol ; 19(1): 120, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107975

RESUMEN

BACKGROUND: The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor. RESULTS: Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt activity as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by coinjection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model. CONCLUSIONS: We show the astacin family protease HAS-7 maintains a single head organizer through proteolysis of HyWnt3. Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra.


Asunto(s)
Hydra , Animales , Tipificación del Cuerpo , Cabeza , Hydra/genética , Metaloendopeptidasas , Proteolisis , Proteómica , ARN Interferente Pequeño , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
3.
Mol Hum Reprod ; 27(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33779727

RESUMEN

The encounter of oocyte and sperm is the key event initiating embryonic development in mammals. Crucial functions of this existential interaction are determined by proteolytic enzymes, such as acrosin, carried in the sperm head acrosome, and ovastacin, stored in the oocyte cortical granules. Ovastacin is released upon fertilisation to cleave the zona pellucida, a glycoprotein matrix surrounding the oocyte. This limited proteolysis hardens the oocyte envelope, and thereby provides a definitive block against polyspermy and protects the developing embryo. On the other hand, acrosin, the renowned and most abundant acrosomal protease, has been thought to enable sperm to penetrate the oocyte envelope. Depending on the species, proteolytic cleavage of the zona pellucida by acrosin is either essential or conducive for fertilisation. However, the specific target cleavage sites and the resulting physiological consequences of this proteolysis remained obscure. Here, we treated native mouse zonae pellucidae with active acrosin and identified two cleavage sites in zona pellucida protein 1 (ZP1), five in ZP2 and one in ZP3 by mass spectrometry. Several of these sites are highly conserved in mammals. Remarkably, limited proteolysis by acrosin leads to zona pellucida remodelling rather than degradation. Thus, acrosin affects both sperm binding and mechanical resilience of the zona pellucida, as assessed by microscopy and nanoindentation measurements, respectively. Furthermore, we ascertained potential regulatory effects of acrosin, via activation of latent pro-ovastacin and inactivation of fetuin-B, a tight binding inhibitor of ovastacin. These results offer novel insights into the complex proteolytic network modifying the extracellular matrix of the mouse oocyte, which might apply also to other species.


Asunto(s)
Acrosina , Zona Pelúcida , Acrosina/genética , Acrosoma/fisiología , Animales , Masculino , Mamíferos , Ratones , Proteolisis , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/genética , Glicoproteínas de la Zona Pelúcida/metabolismo
4.
Reproduction ; 162(4): 259-266, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34320465

RESUMEN

After fertilization, the oocyte-specific metalloproteinase ovastacin is released and cleaves the zona pellucida protein 2 (ZP2), making the zona pellucida impermeable to sperm. Before fertilization, the zona remains permeable because previously released ovastacin is inhibited by fetuin-B. Consequently, in the absence of fetuin-B, ZP2 cleavage occurs prematurely and leads to infertility of female fetuin-B deficient mice. In contrast, fetuin-B/ovastacin double-deficient oocytes show a permanently permeable zona with intact ZP2. In this study, we asked if the elastic modulus of the zona pellucida informs about ZP2 cleavage and thus could serve as a new reference of oocyte fertility. Therefore, we determined the elastic modulus of mouse oocytes by nanoindentation as a direct measure of mechanical zona hardening. The elastic modulus reflects ZP2 cleavage, but with more than double sensitivity compared to immunoblot analysis. The elastic modulus measurement allowed to define the range of zona hardening, confined by the extreme states of the zona pellucida in fetuin-B and ovastacin-deficient oocytes with cleaved and uncleaved ZP2, respectively. We present here nanoindentation as a method to quantify the effect of potential contributing factors on the zona hardening of individual oocytes. To demonstrate this, we showed that mechanical hardening of the zona pellucida is forced by recombinant ovastacin, inhibited by additional administration of fetuin-B, and unaffected by zinc. Since the change in elastic modulus is induced by ZP2 cleavage, an automated elastic modulus measurement of oocytes may serve as a novel sensitive, non-destructive, marker-free, and observer-unbiased method for assessing individual oocyte quality.


Asunto(s)
Oocitos , Zona Pelúcida , Animales , Femenino , Fetuína-B/metabolismo , Fetuína-B/farmacología , Masculino , Ratones , Oocitos/metabolismo , Espermatozoides/metabolismo , Glicoproteínas de la Zona Pelúcida/metabolismo
5.
Mol Hum Reprod ; 23(9): 607-616, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911209

RESUMEN

STUDY QUESTION: How and where is pro-ovastacin activated and how does active ovastacin regulate zona pellucida hardening (ZPH) and successful fertilization? STUDY FINDING: Ovastacin is partially active before exocytosis and pre-hardens the zona pellucida (ZP) before fertilization. WHAT IS KNOWN ALREADY: The metalloproteinase ovastacin is stored in cortical granules, it cleaves zona pellucida protein 2 (ZP2) upon fertilization and thereby destroys the ZP sperm ligand and triggers ZPH. Female mice deficient in the extracellular circulating ovastacin-inhibitor fetuin-B are infertile due to pre-mature ZPH. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We isolated oocytes from wild-type and ovastacin-deficient (Astlnull) FVB mice before and after fertilization (in vitro and in vivo) and quantified ovastacin activity and cleavage of ZP2 by immunoblot. We assessed ZPH by measuring ZP digestion time using α-chymotrypsin and by determining ZP2 cleavage. We determined cellular distribution of ovastacin by immunofluorescence using domain-specific ovastacin antibodies. Experiments were performed at least in triplicate with a minimum of 20 oocytes. Data were pre-analyzed using Shapiro-Wilk test. In case of normal distribution, significance was determined via two-sided Student's t-test, whereas in case of non-normal distribution via Mann-Whitney U-test. MAIN RESULTS AND THE ROLE OF CHANCE: Metaphase II (MII) oocytes contained both inactive pro-ovastacin and activated ovastacin. Immunoblot and ZP digestion assays revealed a partial cleavage of ZP2 even before fertilization in wild-type mice. Partial cleavage coincided with germinal-vesicle breakdown and MII, despite the presence of fetuin-B protein, an endogenous ovastacin inhibitor, in the follicular and oviductal fluid. Upon exocytosis, part of the C-terminal domain of ovastacin remained attached to the plasmalemma, while the N-terminal active ovastacin domain was secreted. This finding may resolve previously conflicting data showing that ovastacin acts both as an oolemmal receptor termed SAS1B (sperm acrosomal SLLP1 binding protein; SLLP, sperm lysozyme like protein) and a secreted protease mediating ZP2 cleavage. LIMITATIONS, REASONS FOR CAUTION: For this study, only oocytes isolated from wild-type and ovastacin-deficient FVB mice were investigated. Some experiments involved oocyte activation by the Ca2+ ionophore A23187 to trigger ZPH. WIDER IMPLICATIONS OF THE FINDINGS: This study provides a detailed spatial and temporal view of pre-mature cleavage of ZP2 by ovastacin, which is known to adversely affect IVF rate in mice and humans. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by the Center of Natural Sciences and Medicine and by a start-up grant of the Johannes Gutenberg University Mainz to W.S., and by a grant from Deutsche Forschungsgemeinschaft and by the START program of the Medical Faculty of RWTH Aachen University to J.F. and W.J.D. There are no competing interests to declare.


Asunto(s)
Fetuína-B/genética , Metaloproteasas/genética , Oocitos/metabolismo , Glicoproteínas de la Zona Pelúcida/genética , Zona Pelúcida/metabolismo , Animales , Quimotripsina/química , Exocitosis , Femenino , Fertilización In Vitro , Fetuína-B/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Metaloproteasas/metabolismo , Metafase , Ratones , Oocitos/citología , Oocitos/crecimiento & desarrollo , Cultivo Primario de Células , Proteolisis , Transducción de Señal , Espermatozoides/citología , Espermatozoides/fisiología , Glicoproteínas de la Zona Pelúcida/metabolismo
6.
FASEB J ; 29(5): 1973-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25634959

RESUMEN

Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and ß-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism.


Asunto(s)
Evolución Biológica , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Células Cultivadas , Drosophila/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Masculino , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Transporte de Proteínas , Proteolisis , Homología de Secuencia de Aminoácido , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 109(40): 16131-6, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988105

RESUMEN

Ectodomain shedding at the cell surface is a major mechanism to regulate the extracellular and circulatory concentration or the activities of signaling proteins at the plasma membrane. Human meprin ß is a 145-kDa disulfide-linked homodimeric multidomain type-I membrane metallopeptidase that sheds membrane-bound cytokines and growth factors, thereby contributing to inflammatory diseases, angiogenesis, and tumor progression. In addition, it cleaves amyloid precursor protein (APP) at the ß-secretase site, giving rise to amyloidogenic peptides. We have solved the X-ray crystal structure of a major fragment of the meprin ß ectoprotein, the first of a multidomain oligomeric transmembrane sheddase, and of its zymogen. The meprin ß dimer displays a compact shape, whose catalytic domain undergoes major rearrangement upon activation, and reveals an exosite and a sugar-rich channel, both of which possibly engage in substrate binding. A plausible structure-derived working mechanism suggests that substrates such as APP are shed close to the plasma membrane surface following an "N-like" chain trace.


Asunto(s)
Membrana Celular/metabolismo , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Modelos Moleculares , Conformación Proteica , Cristalografía , Dimerización , Humanos , Unión Proteica , Estructura Terciaria de Proteína
8.
Biol Chem ; 395(10): 1195-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25205729

RESUMEN

The zona pellucida, a glycoprotein matrix surrounding the mammalian oocyte, hardens after intrusion of the first spermatozoon, thus protecting the embryo until implantation and preventing multiple fertilizations (polyspermy). Definitive zona hardening is mediated by the metalloprotease ovastacin, which is released from cortical granules of the oocyte upon sperm penetration. However, traces of ovastacin seep from unfertilized eggs to cause zona hardening even in the absence of sperm. These small amounts of protease are inactivated by the plasma protein fetuin-B, thus keeping eggs fertilizable. Once a sperm has penetrated the egg, ovastacin from cortical vesicles overrides fetuin-B and initiates zona hardening.


Asunto(s)
Fetuína-B/fisiología , Células Germinativas/fisiología , Metaloproteasas/antagonistas & inhibidores , Animales , Femenino , Fertilidad , Fertilización , Humanos , Embarazo , Interacciones Espermatozoide-Óvulo
9.
FEBS J ; 291(1): 114-131, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690456

RESUMEN

The metalloproteinase ovastacin is released by the mammalian egg upon fertilization and cleaves a distinct peptide bond in zona pellucida protein 2 (ZP2), a component of the enveloping extracellular matrix. This limited proteolysis causes zona pellucida hardening, abolishes sperm binding, and thereby regulates fertility. Accordingly, this process is tightly controlled by the plasma protein fetuin-B, an endogenous competitive inhibitor. At present, little is known about how the cleavage characteristics of ovastacin differ from closely related proteases. Physiological implications of ovastacin beyond ZP2 cleavage are still obscure. In this study, we employed N-terminal amine isotopic labeling of substrates (N-TAILS) contained in the secretome of mouse embryonic fibroblasts to elucidate the substrate specificity and the precise cleavage site specificity. Furthermore, we were able to unravel the physicochemical properties governing ovastacin-substrate interactions as well as the individual characteristics that distinguish ovastacin from similar proteases, such as meprins and tolloid. Eventually, we identified several substrates whose cleavage could affect mammalian fertilization. Consequently, these substrates indicate newly identified functions of ovastacin in mammalian fertilization beyond zona pellucida hardening.


Asunto(s)
Fibroblastos , Semen , Masculino , Animales , Ratones , Glicoproteínas de la Zona Pelúcida/metabolismo , Fibroblastos/metabolismo , Semen/metabolismo , Metaloproteasas/metabolismo , Mamíferos/metabolismo , Endopeptidasas , Fertilización/fisiología
10.
J Biol Chem ; 287(40): 33581-93, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22825851

RESUMEN

BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Glicoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Metaloproteinasas de la Matriz/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Resonancia por Plasmón de Superficie , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA