RESUMEN
Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.
Asunto(s)
Arabidopsis , Chlorophyta , Animales , Plantas/metabolismo , Caspasas/genética , Caspasas/química , Caspasas/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismoRESUMEN
Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.
Asunto(s)
Arabidopsis , Caspasas , Humanos , Caspasas/química , Simulación del Acoplamiento Molecular , Apoptosis , Proteínas de Unión al ADNRESUMEN
State-of-the-art mass spectrometers combined with modern bioinformatics algorithms for peptide-to-spectrum matching (PSM) with robust statistical scoring allow for more variable features (i.e., post-translational modifications) being reliably identified from (tandem-) mass spectrometry data, often without the need for biochemical enrichment. Semi-specific proteome searches, that enforce a theoretical enzymatic digestion to solely the N- or C-terminal end, allow to identify of native protein termini or those arising from endogenous proteolytic activity (also referred to as "neo-N-termini" analysis or "N-terminomics"). Nevertheless, deriving biological meaning from these search outputs can be challenging in terms of data mining and analysis. Thus, we introduce TermineR, a data analysis approach for the (1) annotation of peptides according to their enzymatic cleavage specificity and known protein processing features, (2) differential abundance and enrichment analysis of N-terminal sequence patterns, and (3) visualization of neo-N-termini location. We illustrate the use of TermineR by applying it to tandem mass tag (TMT)-based proteomics data of a mouse model of polycystic kidney disease, and assess the semi-specific searches for biological interpretation of cleavage events and the variable contribution of proteolytic products to general protein abundance. The TermineR approach and example data are available as an R package at https://github.com/MiguelCos/TermineR.
Asunto(s)
Proteolisis , Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Animales , Ratones , Espectrometría de Masas en Tándem/métodos , Procesamiento Proteico-Postraduccional , Algoritmos , Enfermedades Renales Poliquísticas/metabolismo , Proteoma/metabolismo , Proteoma/análisis , Programas Informáticos , Bases de Datos de Proteínas , Péptidos/metabolismo , Péptidos/análisis , Péptidos/químicaAsunto(s)
Caspasas/clasificación , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/clasificación , Proteínas de Plantas/clasificación , Terminología como Asunto , Animales , Caspasas/química , Caspasas/metabolismo , Consenso , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/química , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Relación Estructura-ActividadRESUMEN
Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Caspasas/metabolismo , Estrés Oxidativo/fisiología , Péptidos/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caspasas/genética , Muerte Celular/fisiología , Membrana Celular/genética , Membrana Celular/metabolismo , Péptidos/genética , Unión Proteica/fisiología , Proteínas Quinasas/genética , Estructura Terciaria de ProteínaRESUMEN
BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is an edible cereal crop whose sprouts have been marketed and commercialized for their higher levels of anti-oxidants, including rutin and anthocyanin. UDP-glucose flavonoid glycosyltransferases (UFGTs) play an important role in the biosynthesis of flavonoids in plants. So far, few studies are available on UFGT genes that may play a role in tartary buckwheat flavonoids biosynthesis. Here, we report on the identification and functional characterization of seven UFGTs from tartary buckwheat that are potentially involved in flavonoid biosynthesis (and have varying effects on plant growth and development when overexpressed in Arabidopsis thaliana.) RESULTS: Phylogenetic analysis indicated that the potential function of the seven FtUFGT proteins, FtUFGT6, FtUFGT7, FtUFGT8, FtUFGT9, FtUFGT15, FtUFGT40, and FtUFGT41, could be divided into three Arabidopsis thaliana functional subgroups that are involved in flavonoid biosynthesis of and anthocyanin accumulation. A significant positive correlation between FtUFGT8 and FtUFGT15 expression and anthocyanin accumulation capacity was observed in the tartary buckwheat seedlings after cold stress. Overexpression in Arabidopsis thaliana showed that FtUFGT8, FtUFGT15, and FtUFGT41 significantly increased the anthocyanin content in transgenic plants. Unexpectedly, overexpression of FtUFGT6, while not leading to enhanced anthocyanin accumulation, significantly enhanced the growth yield of transgenic plants. When wild-type plants have only cotyledons, most of the transgenic plants of FtUFGT6 had grown true leaves. Moreover, the growth speed of the oxFtUFGT6 transgenic plant root was also significantly faster than that of the wild type. At later growth, FtUFGT6 transgenic plants showed larger leaves, earlier twitching times and more tillers than wild type, whereas FtUFGT15 showed opposite results. CONCLUSIONS: Seven FtUFGTs were isolated from tartary buckwheat. FtUFGT8, FtUFGT15, and FtUFGT41 can significantly increase the accumulation of total anthocyanins in transgenic plants. Furthermore, overexpression of FtUFGT6 increased the overall yield of Arabidopsis transgenic plants at all growth stages. However, FtUFGT15 shows the opposite trend at later growth stage and delays the growth speed of plants. These results suggested that the biological function of FtUFGT genes in tartary buckwheat is diverse.
Asunto(s)
Fagopyrum/genética , Genes de Plantas/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Antocianinas/metabolismo , Arabidopsis/genética , Secuencia Conservada , Fagopyrum/enzimología , Flavonoides/metabolismo , Genes de Plantas/fisiología , Glicosiltransferasas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADNRESUMEN
Proteases are enzymes that cleave peptide bonds of other proteins. Their omnipresence and diverse activities make them important players in protein homeostasis and turnover of the total cell proteome as well as in signal transduction in plant stress responses and development. To understand protease function, it is of paramount importance to assess when and where a specific protease is active. Here, we review the existing methods to detect in vivo protease activity by means of imaging chemical activity-based probes and genetically encoded sensors. We focus on the diverse fluorescent and luminescent sensors at the researcher's disposal and evaluate the potential of imaging techniques to deliver in vivo spatiotemporal detail of protease activity. We predict that in the coming years, revised techniques will help to elucidate plant protease activity and functions and hence expand the current status of the field.
Asunto(s)
Metabolómica/métodos , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , ProteolisisRESUMEN
During plant vascular development, xylem tracheary elements (TEs) form water-conducting, empty pipes by genetically regulated cell death. Cell death is prevented from spreading to non-TEs by unidentified intercellular mechanisms, downstream of METACASPASE9 (MC9)-mediated regulation of autophagy in TEs. Here, we identified differentially abundant extracellular peptides in vascular-differentiating wild-type and MC9-down-regulated Arabidopsis cell suspensions. A peptide named Kratos rescued the abnormally high ectopic non-TE death resulting from either MC9 knockout or TE-specific overexpression of the ATG5 autophagy protein during experimentally induced vascular differentiation in Arabidopsis cotyledons. Kratos also reduced cell death following mechanical damage and extracellular ROS production in Arabidopsis leaves. Stress-induced but not vascular non-TE cell death was enhanced by another identified peptide, named Bia. Bia is therefore reminiscent of several known plant cell death-inducing peptides acting as damage-associated molecular patterns. In contrast, Kratos plays a novel extracellular cell survival role in the context of development and during stress response.
Asunto(s)
Apoptosis/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Unión al ARN/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Caspasas/genética , Caspasas/metabolismo , Regulación hacia Abajo/fisiología , Hojas de la Planta/fisiología , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Xilema/fisiologíaRESUMEN
Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes.
Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Biosíntesis de Proteínas/genética , Genoma de Planta , Biblioteca de Péptidos , Péptidos/genética , Péptidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ProteogenómicaRESUMEN
Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.
Asunto(s)
Caspasas/metabolismo , Populus/enzimología , Árboles/enzimología , Madera/enzimología , Secuencia de Aminoácidos , Caspasas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Péptidos/química , Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteómica , Xilema/citología , Xilema/genética , Xilema/metabolismoRESUMEN
In the last decade, microarray studies have delivered extensive inventories of transcriptome-wide changes in messenger RNA levels provoked by various types of oxidative stress in Arabidopsis (Arabidopsis thaliana). Previous cross-study comparisons indicated how different types of reactive oxygen species (ROS) and their subcellular accumulation sites are able to reshape the transcriptome in specific manners. However, these analyses often employed simplistic statistical frameworks that are not compatible with large-scale analyses. Here, we reanalyzed a total of 79 Affymetrix ATH1 microarray studies of redox homeostasis perturbation experiments. To create hierarchy in such a high number of transcriptomic data sets, all transcriptional profiles were clustered on the overlap extent of their differentially expressed transcripts. Subsequently, meta-analysis determined a single magnitude of differential expression across studies and identified common transcriptional footprints per cluster. The resulting transcriptional footprints revealed the regulation of various metabolic pathways and gene families. The RESPIRATORY BURST OXIDASE HOMOLOG F-mediated respiratory burst had a major impact and was a converging point among several studies. Conversely, the timing of the oxidative stress response was a determining factor in shaping different transcriptome footprints. Our study emphasizes the need to interpret transcriptomic data sets in a systematic context, where initial, specific stress triggers can converge to common, aspecific transcriptional changes. We believe that these refined transcriptional footprints provide a valuable resource for assessing the involvement of ROS in biological processes in plants.
Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Modelos Biológicos , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Transcripción GenéticaRESUMEN
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1'. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Caspasas/metabolismo , Proteolisis , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálisis , Caspasas/genética , Regulación de la Expresión Génica de las Plantas , Gluconeogénesis , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Plantas Modificadas Genéticamente , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Fracciones Subcelulares/enzimología , Especificidad por SustratoRESUMEN
Calcium is an important second messenger in eukaryotic cells that regulates many different cellular processes. To elucidate calcium regulation in chloroplasts, we identified the targets of calcium-dependent phosphorylation within the stromal proteome. A 73 kDa protein was identified as one of the most dominant proteins undergoing phosphorylation in a calcium-dependent manner in the stromal extracts of both Arabidopsis and Pisum. It was identified as TKL (transketolase), an essential enzyme of both the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate pathway. Calcium-dependent phosphorylation of both Arabidopsis isoforms (AtTKL1 and AtTKL2) could be confirmed in vitro using recombinant proteins. The phosphorylation is catalysed by a stroma-localized protein kinase, which cannot utilize GTP. Phosphorylation of AtTKL1, the dominant isoform in most tissues, occurs at a serine residue that is conserved in TKLs of vascular plants. By contrast, an aspartate residue is present in this position in cyanobacteria, algae and mosses. Characterization of a phosphomimetic mutant (S428D) indicated that Ser428 phosphorylation exerts significant effects on the enzyme's substrate saturation kinetics at specific physiological pH values. The results of the present study point to a role for TKL phosphorylation in the regulation of carbon allocation.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Cloroplastos/metabolismo , Serina/metabolismo , Transcetolasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Datos de Secuencia Molecular , Fosforilación/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Serina/genética , Transcetolasa/química , Transcetolasa/genéticaRESUMEN
To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplásmico , Gotas Lipídicas , Mutación , Semillas , Proteína que Contiene Valosina , Arabidopsis/genética , Arabidopsis/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Gotas Lipídicas/metabolismo , Proteostasis , Proteolisis , Regulación de la Expresión Génica de las Plantas , Longevidad/fisiología , Longevidad/genéticaRESUMEN
Cell death of xylem elements is manifested by rupture of the tonoplast and subsequent autolysis of the cellular contents. Metacaspases have been implicated in various forms of plant cell death but regulation and execution of xylem cell death by metacaspases remains unknown. Analysis of the type II metacaspase gene family in Arabidopsis thaliana supported the function of METACASPASE 9 (AtMC9) in xylem cell death. Progression of xylem cell death was analysed in protoxylem vessel elements of 3-d-old atmc9 mutant roots using reporter gene analysis and electron microscopy. Protoxylem cell death was normally initiated in atmc9 mutant lines, but detailed electron microscopic analyses revealed a role for AtMC9 in clearance of the cell contents post mortem, that is after tonoplast rupture. Subcellular localization of fluorescent AtMC9 reporter fusions supported a post mortem role for AtMC9. Further, probe-based activity profiling suggested a function of AtMC9 on activities of papain-like cysteine proteases. Our data demonstrate that the function of AtMC9 in xylem cell death is to degrade vessel cell contents after vacuolar rupture. We further provide evidence on a proteolytic cascade in post mortem autolysis of xylem vessel elements and suggest that AtMC9 is part of this cascade.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Caspasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Caspasas/genética , Muerte Celular , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteolisis , Pseudomonas syringae/patogenicidad , Proteínas Recombinantes de Fusión , Vacuolas/metabolismo , Xilema/genética , Xilema/ultraestructuraRESUMEN
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Asunto(s)
Endopeptidasas , Péptido Hidrolasas , Péptido Hidrolasas/metabolismo , Endopeptidasas/metabolismo , Proteolisis , Plantas/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Protein quality control is an important aspect of stress recovery. It maintains protein homeostasis through a machinery of regulatory proteins such as chaperones and proteases. When the system recognizes accumulation of misfolded or aggregated proteins, the cell recruits a set of regulatory proteins to initiate protein quality control. To understand the dynamics of stress-mediated aggregate protein formation and recovery in plants, robust methods aimed at detecting and measuring such protein aggregates are needed. This will help us to deepen our understanding of protein quality control mechanisms in plants.
Asunto(s)
Plantas , Agregado de Proteínas , Plantas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Biosíntesis de ProteínasRESUMEN
The role of protein phosphorylation for adjusting chloroplast functions to changing environmental needs is well established, whereas calcium signalling in the chloroplast is only recently becoming appreciated. The work presented here explores the potential cross-talk between calcium signalling and protein phosphorylation in chloroplasts and provides the first evidence for targets of calcium-dependent protein phosphorylation at the thylakoid membrane. Thylakoid proteins were screened for calcium-dependent phosphorylation by 2D gel electrophoresis combined with phospho-specific labelling and PsaN, CAS, and VAR1, among other proteins, were identified repeatedly by mass spectrometry. Subsequently their calcium-dependent phosphorylation was confirmed in kinase assays using the purified proteins and chloroplast extracts. This is the first report on the protein targets of calcium-dependent phosphorylation of thylakoid proteins and provides ground for further studies in this direction.
Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Pisum sativum/metabolismo , Fosforilación , Transducción de SeñalRESUMEN
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.